Lecture 20: Query Execution
Monday, November 18, 2002

Outline
- Query execution: 15.1 – 15.5

Architecture of a Database Engine

SQL query
Parse Query

Select Logical Plan
Logical plan

Select Physical Plan
Physical plan

Query Execution

An Algebra for Queries
- Logical operators
 - what they do
- Physical operators
 - how they do it

Logical Operators in the Algebra
- Union, intersection, difference
- Selection σ
- Projection Π
- Join ⋈
- Duplicate elimination δ
- Grouping γ
- Sorting τ

Example
SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

\[\Pi_{city, c} \sigma_{p > 100} \gamma_{city, \text{sum}(price) \rightarrow p, \text{count}(*) \rightarrow c} \text{sales} \]
Physical Operators

Query Plan:
- logical tree
- implementation choice at every node
- scheduling of operations.

Some operators are from relational algebra, and others (e.g., scan, group) are not.

Question in Class

Product\((\text{pname}, \text{cname}) \bowtie \text{Company}(\text{cname}, \text{city}) \)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is in main memory?

- Nested loop join: time ~
- Sort and merge = merge-join: time ~
- Hash join: time ~

Cost Parameters

- \(B(R) \) = number of blocks for relation \(R \)
- \(T(R) \) = number of tuples in relation \(R \)
- \(V(R, a) \) = number of distinct values of attribute \(a \)

Cost

Cost of an operation = number of disk I/Os needed to:
- read the operands
- compute the result

Cost of writing the result to disk is not included on the following slides

Question: the cost of sorting a table with \(B \) blocks?

Answer:
Scanning Tables
- The table is clustered:
 - Table-scan: if we know where the blocks are
 - Index scan: if we have a sparse index to find the blocks
- The table is unclustered
 - May need one read for each record

Sorting While Scanning
- Sometimes it is useful to have the output sorted
- Three ways to scan it sorted:
 - If there is a primary or secondary index on it, use it during scan
 - If it fits in memory, sort there
 - If not, use multi-way merge sort

Cost of the Scan Operator
- Clustered relation:
 - Table scan:
 - Unsorted: B(R)
 - Sorted: 3B(R)
 - Index scan:
 - Unsorted: B(R)
 - Sorted: B(R) or 3B(R)
- Unclustered relation
 - Unsorted: T(R)
 - Sorted: T(R) + 2B(R)

One-Pass Algorithms
Selection $\sigma(R)$, projection $\Pi(R)$
- Both are tuple-at-a-time algorithms
- Cost: $B(R)$

One-pass Algorithms
Hash join: $R \bowtie S$
- Scan S, build buckets in main memory
- Then scan R and join
- Cost: $B(R) + B(S)$
- Assumption: $B(S) \leq M$

One-pass Algorithms
Duplicate elimination $\delta(R)$
- Need to keep tuples in memory
- When new tuple arrives, need to compare it with previously seen tuples
- Balanced search tree, or hash table
- Cost: $B(R)$
- Assumption: $B(\delta(R)) \leq M$
Question in Class

Grouping:
Product(name, department, quantity)
γdepartment, sum(quantity)(Product) → Answer(department, sum)

Question: how do you compute it in main memory?
Answer:

One-pass Algorithms

Grouping: γa, sum(b) (R)
• Need to store all a’s in memory
• Also store the sum(b) for each a
• Balanced search tree or hash table
• Cost: B(R)
• Assumption: number of cities fits in memory

One-pass Algorithms

Binary operations: R \cap S, R \cup S, R \setminus S
• Assumption: min(B(R), B(S)) <= M
• Scan one table first, then the next, eliminate duplicates
• Cost: B(R)+B(S)

Nested Loop Joins

• Tuple-based nested loop R \bowtie S

\begin{verbatim}
for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)
\end{verbatim}

• Cost: T(R) T(S), sometimes T(R) B(S)

Nested Loop Joins

• We can be much more clever

• Question: how would you compute the join in the following cases? What is the cost?
 - B(R) = 1000, B(S) = 2, M = 4
 - B(R) = 1000, B(S) = 4, M = 4
 - B(R) = 1000, B(S) = 6, M = 4

Nested Loop Joins

• Block-based Nested Loop Join

\begin{verbatim}
for each (M-1) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if r and s join then output (r,s)
\end{verbatim}

• Cost: T(R) T(S)
Nested Loop Joins

- Block-based Nested Loop Join
- Cost:
 - Read S once: cost B(S)
 - Outer loop runs B(S)(M-1) times, and each time need to read R: costs B(S)B(R)/(M-1)
 - Total cost: B(S) + B(S)B(R)/(M-1)
- Notice: it is better to iterate over the smaller relation first
- R * S: R=outer relation, S=inner relation

Two-Pass Algorithms Based on Sorting

- Recall: multi-way merge sort needs only two passes!
- Assumption: B(R) <= M^2
- Cost for sorting: 3B(R)

Two-Pass Algorithms Based on Sorting

Duplicate elimination 3(R)
- Trivial idea: sort first, then eliminate duplicates
- Step 1: sort chunks of size M, write
 - cost 2B(R)
- Step 2: merge M-1 runs, but include each tuple only once
 - cost B(R)
- Total cost: 3B(R), Assumption: B(R) <= M^2

Two-Pass Algorithms Based on Sorting

Grouping: \(\gamma_{a, \text{sum}(b)} \) (R)
- Same as before: sort, then compute the sum(b) for each group of a’s
- Total cost: 3B(R)
- Assumption: B(R) <= M^2

Two-Pass Algorithms Based on Sorting

Binary operations: R \(\cup \) S, R \(\cap \) S, R \(- \) S
- Idea: sort R, sort S, then do the right thing
- A closer look:
 - Step 1: split R into runs of size M, then split S into runs of size M. Cost: 2B(R) + 2B(S)
 - Step 2: merge M/2 runs from R; merge M/2 runs from S; output a tuple on a case by cases basis
- Total cost: 3B(R)+3B(S)
- Assumption: B(R)+B(S) <= M^2
Two-Pass Algorithms Based on Sorting

Join R \Join S
- Start by sorting both R and S on the join attribute:
 - Cost: 4B(R) + 4B(S) (because need to write to disk)
- Read both relations in sorted order, match tuples
 - Cost: B(R) + B(S)
- Difficulty: many tuples in R may match many in S
 - If at least one set of tuples fits in M, we are OK
 - Otherwise need nested loop, higher cost
- Total cost: 5B(R) + 5B(S)
- Assumption: B(R) <= M^2, B(S) <= M^2

Two-Pass Algorithms Based on Sorting

Join R \Join S
- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R) + 3B(S)
- Assumption: B(R) + B(S) <= M^2

Hash Based Algorithms for \(\delta \)

- Recall: \(\delta(R) = \) duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply \(\delta \) to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: B(R) <= M^2

Hash Based Algorithms for \(\gamma \)

- Recall: \(\gamma(R) = \) grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply \(\gamma \) to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: B(R) <= M^2