Lecture 17: Data Storage

Friday, November 8, 2006

Outline

» Representing data elements (chapter 12)
* Index structures (13.1, 13.2)

Representing Data Elements

« Relational database elements:

CREATE TABLE Product (

pid INT PRIMARY KEY,

name CHAR(20),

description VARCHAR(200),

maker CHAR(10) REFERENCES Company(name)

)

* A tuple is represented as a record

Record Formats: Fixed Length

Fl F2 F3 F4

<—Ll—>{ L2 L3 ‘ L4 ‘
\ \

Base address (B) Address = B+L1+L2

* Information about field types same for all
records in a file; stored in system catalogs.

« Finding i 'th field requires scan of record.
* Note the importance of schema information!

4

Record Header
To schema
length
Fl F2 F3 ¥4
| \‘%mﬂ‘ 12 H 13 ‘m ‘
header |
timestamp

Need the header because:
*The schema may change

for a while new+old may coexist
*Records from different relations may coexist

Variable Length Records

Other header information

header F1l F2 F3 F4
‘ ‘ ‘ <—Ll~>{ L2 L3 ‘ L4 ‘
length I

Place the fixed fields first: F1, F2

Then the variable length fields: F3, F4

Null values take 2 bytes only

Sometimes they take 0 bytes (when at the end)

Records With Repeating Fields

Other header information

header Fl F2 F3

i e i
L]

il
!

length

Needed e.g. in Object Relational systems,
or fancy representations of many-many relationships

Storing Records in Blocks

* Blocks have fixed size (typically 4k)

BLOCK

R4 B R R

Spanning Records Across Blocks

block block
header heade

R1 ‘Rz R2 | R3 %
1

* When records are very large
* Or even medium size: saves space in blocks

9

BLOB

* Binary large objects

* Supported by modern database systems

+ E.g. images, sounds, etc.

 Storage: attempt to cluster blocks together

CLOB = character large objec
* Supports only restricted operations

10

Modifications: Insertion

* File is unsorted: add it to the end (easy ©)

* File is sorted:
— Is there space in the right block ?
* Yes: we are lucky, store it there
— Is there space in a neighboring block ?
* Look 1-2 blocks to the left/right, shift records
— If anything else fails, create overflow block

Overflow Blocks
Block, Block, Block,,,
Overflow

+ After a while the file starts being dominated
by overflow blocks: time to reorganize

Modifications: Deletions

* Free space in block, shift records

* Maybe be able to eliminate an overflow
block

¢ Can never really eliminate the record,
because others may point to it
— Place a tombstone instead (a NULL record)

Modifications: Updates

* If new record is shorter than previous, ecasy ©

« If it is longer, need to shift records, create
overflow blocks

Physical Addresses

» Each block and each record have a physical
address that consists of:
— The host
— The disk
— The cylinder number
— The track number
— The block within the track

— For records: an offset in the block
+ sometimes this is in the block’s header

Logical Addresses

* Logical address: a string of bytes (10-16)
* More flexible: can blocks/records around
* But need translation table:

Logical address | Physical address
L1 P1
L2 P2
L3 P3

Main Memory Address

e When the block is read in main memory, it
receives a main memory address

¢ Need another translation table

Memory address

Logical address

M1 L1
M2 L2
M3 L3

Optimization: Pointer Swizzling

» = the process of replacing a physical/logical
pointer with a main memory pointer

« Still need translation table, but subsequent
references are faster

Pointer Swizzling

Block 1 Block 2
- [[CI
read in memory
swizzled ¥
Memor

Pointer Swizzling

* Automatic: when block is read in main
memory, swizzle all pointers in the block

* On demand: swizzle only when user
requests

* No swizzling: always use translation table

20

Pointer Swizzling

* When blocks return to disk: pointers need

unswizzled

» Danger: someone else may point to this

block

— Pinned blocks: we don’t allow it to return to disk

— Keep a list of references to this block

Indexes

* An index on a file speeds up selections on the
search key fields for the index.

— Any subset of the fields of a relation can be the search
key for an index on the relation.

— Search key is not the same as key (minimal set of fields
that uniquely identify a record in a relation).
* An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value k.

Index Classification

Primary/secondary

Clustered/unclustered

Dense/sparse

B+ tree / Hash table / ...

Primary Index

* File is sorted on the index attribute
* Dense index: sequence of (key,pointer) pairs

0 [

» |

3

0 | —)

o | —]

0

50

2] [2T=2] [eTe
BEIREE RS

E3

Primary Index

* Sparse index

Primary Index with Duplicate
Keys

¢ Dense index:

wl=][=1=

2]
8|3

HH

Primary Index with Duplicate
Keys

* Sparse index: pointer to lowest search key

in each block: bt
need to
search

>)
E —

20

 Search for 20 2

Primary Index with Duplicate
Keys

* Better: pointer to lowest new search key in
cach block: I —
. Search for 20 o]

]
=]
=

. E

..ok to
search
from here

. ol 1]
Search for 15?7 35 ? T — 2

Secondary Indexes

* To index other attributes than primary key
* Always dense (why ?)

Clustered/Unclustered

* Primary indexes = usually clustered
» Secondary indexes = usually unclustered

Clustered vs. Unclustered Index

Data entries

Data Records Data Records

CLUSTERED UNCLUSTERED

Secondary Indexes

* Applications:
— index other attributes than primary key
— index unsorted files (heap files)
— index clustered data

Applications of Secondary Indexes

* Clustered data
Company(name, city), Product(pid, maker)

Select city Select pid
From Company, Product From Company, Product
Where name=maker Where name=maker

and pid=“p045” and city="Seattle”

Products of company | Products of company 2 Products of company 3

N N .

Company 1 Company 2 Company 3 .

Composite Search Keys

Examples of composite key
indexes using lexicographic order.

* Composite Search Keys: Search
on a combination of fields.

— Equality query: Every field 1
value is equal to a constant 12
value. E.g. wrt <sal,age> 1220 nameage sal 12
index: 13,75 bob 12 10 13

<age, sal> cal 1180 <age>
* age=20 and sal =75 joe 12 20

— Range query: Some field ue 1375 10
: . Data records 20
value is not a constant. E.g.: 513 sorted by name s
* age =20; or age=20 and 8011 80
sal > 10 <sal, age> <sal>

Data entries in index Data entries
sorted by <sal,age> sorted by <sal>

