
1

1

Lecture 13: XQuery
XML Publishing, XML Storage

Monday, October 28, 2002

2

FLWR (“Flower”) Expressions

FOR ...

LET...

WHERE...

RETURN...

3

XQuery

Find all book titles published after 1995:

FOR $x IN document("bib.xml")/bib/book

WHERE $x/year/text() > 1995

RETURN { $x/title }

Result:
<title> abc </title>
<title> def </title>
<title> ghi </title>

4

XQuery

Find book titles by the coauthors of “Database
Theory” :

FOR $x IN bib/book[title/text() = “Database Theory”]
$y IN bib/book[author/text() = $x/author/text()]

RETURN <answer> { $y/title/text() } </answer>

Result:
<answer> abc </ answer >
< answer > def </ answer >
< answer > abc </ answer >
< answer > ghk </ answer >

Question:
Why do we get duplicates ?

5

XQuery

Same as before, but eliminate duplicates:

Result:
<answer> abc </ answer >
< answer > def </ answer >
< answer > ghk </ answer >

distinct = a function
that eliminates duplicates

Need to apply to a collection
of text values, not of elements – note how query has changed

FOR $x IN bib/book[title/text() = “Database Theory”]/author/text()
$y IN distinct(bib/book[author/text() = $x] /title/text())

RETURN <answer> { $y } </answer>

6

SQL and XQuery Side-by-side
Product(pid, name, maker)
Company(cid, name, city)

Find all products made in Seattle

SELECT x.name
FROM Product x, Company y
WHERE x.maker=y.cid

and y.city=“Seattle”

FOR $x in /db/Product/row
$y in /db/Company/row

WHERE
$x/maker/text()=$y/cid/text()
and $y/city/text() = “Seattle”

RETURN { $x/name }

SQL XQuery

FOR $y in /db/Company/row[city/text()=“Seattle”]
$x in /db/Product/row[maker/text()=$y/cid/text()]

RETURN { $x/name }

Cool
XQuery

2

7

XQuery: Nesting
For each author of a book by Morgan

Kaufmann, list all books she published:

FOR $a IN /bib/book[publisher /text()=“Morgan Kaufmann”]/author)
RETURN <result>

{ $a,
FOR $t IN /bib/book[author/text()=$a/text()]/title
RETURN $t

}
</result>

In the RETURN clause comma concatenates XML fragments
8

XQuery

<result>
<author>Jones</author>
<title> abc </title>
<title> def </title>

</result>
<result>

<author> Smith </author>
<title> ghi </title>

</result>

Result:

9

XQuery

• FOR $x in expr -- binds $x to each value in
the list expr

• LET $x := expr -- binds $x to the entire list
expr
– Useful for common subexpressions and for

aggregations

10

XQuery

Find books whose price is larger than average:

LET $a:=avg(/bib/book/price/text())
FOR $b in /bib/book
WHERE $b/price/text() > $a
RETURN { $b }

11

XQuery

$b is a collection of elements, not a single element
count = a (aggregate) function that returns the number of elms

<big_publishers>
{ FOR $p IN distinct(//publisher/text())

LET $b := document("bib.xml")/book[publisher/text() = $p]
WHERE count($b) > 100
RETURN <publisher> { $p } </publisher>

}
</big_publishers>

Find all publishers that published more than 100 books:

12

XQuery

Summary:

• FOR-LET-WHERE-RETURN = FLWR

FOR/LET Clauses

WHERE Clause

RETURN Clause

List of tuples

List of tuples

Instance of Xquery data model

3

13

FOR v.s. LET

FOR

• Binds node variables � iteration

LET

• Binds collection variables � one value

14

FOR v.s. LET

FOR $x IN /bib/book
RETURN <result> { $x } </result>

Returns:
<result> <book>...</book></result>
<result> <book>...</book></result>
<result> <book>...</book></result>
...

LET $x := /bib/book
RETURN <result> { $x } </result>

Returns:
<result> <book>...</book>

<book>...</book>
<book>...</book>
...

</result>

15

Collections in XQuery

• Ordered and unordered collections
– /bib/book/author/text() = an ordered collection: result is

in document order

– distinct(/bib/book/author/text()) = an unordered
collection: the output order is implementation dependent

• LET $a := /bib/book � $a is a collection

• $b/author � a collection (several authors...)

RETURN <result> { $b/author } </result>
Returns:

<result> <author>...</author>
<author>...</author>
<author>...</author>
...

</result>
16

The Role of XML Data

• XML is designed for data exchange, not to replace
relational or E/R data

• Sources of XML data:
– Created manually with text editors: not really data
– Generated automatically from relational data (will

discuss next)
– Text files, replacing older data formats: Web server

logs, scientific data (biological, astronomical)
– Stored/processed in native XML engines: very few

applications need that today

17

XML from/to Relational Data

• XML publishing:
– relational data � XML

• XML storage:
– XML � relational data

18

XML Publishing

Relational
Database

Application
WebXML

publishing

Tuple
streams

XML

SQL Xpath/
XQuery

4

19

XML Publishing

• Exporting the data is easy: we do this already for
HTML

• Translating XQuery � SQL is hard

XML publishing systems:
• Research: Experanto (IBM/DB2), SilkRoute

(AT&T Labs and UW)
– XQuery � SQL

• Commercial: SQL Server, Oracle
– only Xpath � SQL and with restrictions

20

XML Publishing

• Relational schema:
Student(sid, name, address)

Course(cid, title, room)

Enroll(sid, cid, grade)

student courseenroll

Will follow SilkRoute, more or less

21

XML Publishing
<xmlview>

<course> <title> Operating Systems </title>
<room> MGH084 </room>
<student> <name> John </name>

<address> Seattle </address >
<grade> 3.8 </grade>

</student>
<student> …</student>

…
</course>
<course> <title> Database </title>

<room> EE045 </room>
<student> <name> Mary </name>

<address> Shoreline </address >
<grade> 3.9 </grade>

</student>
<student> …</student>

…
</course>
…

</xmlview>

Other
representations
possible too

Group by
courses:
redundant
representation
of students

22

XML Publishing

<!ELEMENT xmlview (course*)>

<!ELEMENT course (title, room, student*)>

<!ELEMENT student (name,address,grade)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT grade (#PCDATA)>

First thing to do: design the DTD:

23

<xmlview>
{ FOR $x IN /db/Course/row

RETURN
<course>

<title> { $x/title/text() } </title>
<room> { $x/room/text() } </room>
{ FOR $y IN /db/Enroll/row[cid/text() = $x/cid/text()]/row

$z IN /db/Student/row[sid/text() = $y/sid/text()]/row
RETURN <student> <name> { $z/name/text() } </name>

<address> { $z/address/text() } </address>
<grade> { $y/grade/text() } </grade>

</student>
}

</course>
}
</xmlview>

Now we write an XQuery to export relational data � XML
Note: result is is the right DTD

24

XML Publishing
Query: find Mary’s grade in Operating Systems

FOR $x IN /xmlview/course[title/text()=“Operating Systems”],
$y IN $x/student/[name/text()=“Mary”]

RETURN <answer> $y/grade/text() </answer>

XQuery

SELECT Enroll.grade
FROM Student, Enroll, Course
WHERE Student.name=“Mary” and Course.title=“OS”

and Student.sid = Enroll.sid and Enroll.cid = Course.cid

SQL

SilkRoute
does this

automatically

5

25

XML Publishing

How do we choose the output structure ?

• Determined by agreement, with our
partners, or dictated by committees
– XML dialects (called applications) = DTDs

• XML Data is often nested, irregular, etc

• No normal forms for XML

26

XML Storage

• Often the XML data is small and is parsed
directly into the application (DOM API)

• Sometimes it is big, and we need to store it in
a database

• The XML storage problem:
– How do we choose the schema of the database ?

• Much harder than XML publishing (why ?)

27

XML Storage

Two solutions:

• Schema derived from DTD

• Storing XML as a graph: “Edge relation”

28

Designing a Schema from DTD

Design a relational schema for:

<!DOCTYPE company [
<!ELEMENT company ((person|product)*)>
<!ELEMENT person (ssn, name, office?, phone*)>
<!ELEMENT ssn (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT product (pid, name, ((price,availability)|description))>
<!ELEMENT pid (#PCDATA)>
<!ELEMENT description (#PCDATA)>

]>

29

Designing a Schema from DTD
<!DOCTYPE company [
<!ELEMENT company ((person|product)*)>
<!ELEMENT person (ssn, name, office?, phone*)>
<!ELEMENT ssn (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT product (pid, name, ((price,availability)|description))>
<!ELEMENT pid (#PCDATA)>
<!ELEMENT description (#PCDATA)>

]>

First, construct
the DTD graph:

company

person product

ssn name office phone pid price avail. descr.

* *

*

30

Designing a Schema from DTD

Next, design the
relational schema,
using common sense.

company

person product

ssn name office phone pid price avail. descr.

* *

*

Person(ssn, name, office)
Phone(ssn, phone)
Product(pid, name, price, avail., descr.)

Which attributes may be null ?

6

31

Designing a Schema from DTD

What happens to queries:

FOR $x IN /company/product[description]
RETURN <answer> { $x/name, $x/description } </answer>

SELECT Product.name, Product.description
FROM Product
WHERE Product.description IS NOT NULL

32

Storing XML as a Graph

• Every XML instance is a tree

• Hence we can store it as any graph, using an
Edge table

• In addition we need a Value table to store
the data values (#PCDATA)

33

Storing XML as a Graph

db

book book publisher

title author title author author title state
“ Compl et e
Gui de
t o DB2”

“ Chamber l i n”“ Tr ansact i on
Pr ocessi ng”

“ Ber nst ei n”“ Newcomer ”
“ Mor gan
Kauf man”

“ CA”

1

2

3 4

5

6 7 8

9

10 11

0

.

7author5

6title5

5book1

4author2

3title2

2book1

1db0

DestTagSource

.

. . .6

Chamberlin4

Complete guide . . .3

ValSource

Edge

Value

34

Storing XML as a Graph

What happens to queries:

FOR $x IN /db/book[author/text()=“Chamberlin”]
RETURN $x/title

35

Storing XML as a Graph

What happens to queries:

SELECT vtitle.value
FROM Edge xdb, Edge xbook, Edge xauthor, Edge xtitle,

Value vauthor, Value vtitle
WHERE xdb.source=0 and xdb.tag = ‘db’ and

xdb.dest = xbook.source and xbook.tag = ‘book’ and
xbook.dest = xauthor.source and xauthor.tag = ‘author’ and
xbook.dest = xtitle.source and xtitle.tag = ‘ title’ and
xauthor.dest = vauthor.source and vauthor.value = ‘Chamberin and
xtitle.dest = vtitle.source 36

Storing XML as a Graph

Edge relation summary:

• Same relational schema for every XML document:
– Edge(Source, Tag, Dest)

– Value(Source, Val)

• Generic: works for every XML instance

• But inefficient:
– Repeat tags multiple times

– Need many joins to reconstruct data

