Lecture 10: Database Design and Relational Algebra

Monday, October 21, 2002

Outline

- Design of a Relational schema (3.6)
- Relational Algebra (5.2)
- Operations on bags (5.3, 5.4)
 - Reading assignment 5.3 and 5.4 (won't have time to cover in class)

2

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1,...,A_n\xrightarrow{} B$ is a non-trivial dependency in R , then $\{A_1,...,A_n\}$ is a key for R

In English (though a bit vague):

Whenever a set of attributes of R is determining another attribute, should determine <u>all</u> the attributes of R.

BCNF Decomposition Algorithm

Repeat

choose $A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n$ that violates the BNCF condition split R into $R_1(A_1, \ldots, A_m, B_1, \ldots, B_n)$ and $R_2(A_1, \ldots, A_m, [others])$ continue with both R_1 and R_2

Until no more violations

Is there a 2-attribute relation that is not in BCNF?

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

What are the dependencies? SSN → Name, City What are the keys?

{SSN, PhoneNumber}

Is it in BCNF?

Decompose it into BCNF

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN → Name, City

SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
007 (5 4331	000 555 1224

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN → name, age
age → hairColor

Decompose in BCNF (in class):

Step 1: find all keys (How ? Compute S+, for various sets S)

Step 2: now decompose

7

Other Example

- R(A,B,C,D) A \rightarrow B, B \rightarrow C
- Key: AD
- Violations of BCNF: $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow BC$
- Pick A \rightarrow BC: split into R1(A,BC) R2(A,D)
- What happens if we pick $A \rightarrow B$ first?

8

Lossless Decompositions

A decomposition is *lossless* if we can recover:

R' is in general larger than R. Must ensure R' = R

Lossless Decompositions

• Given R(A,B,C) s.t. A→B, the decomposition into R1(A,B), R2(A,C) is lossless

10

3NF: A Problem with BCNF

Unit Product No FDs

Notice: we loose the FD: Company, Product → Unit 11

 $Unit \rightarrow Company$

So What's the Problem?

Unit	Company	Unit	Product
Galaga99	UW	Galaga99	databases
Bingo	UW	Bingo	databases

No problem so far. All *local* FD's are satisfied. Let's put all the data back into a single table again:

Unit	Company	Product
Galaga99	UW	databases
Bingo	UW	databases

Violates the dependency: company, product -> unit!

1.2

Solution: 3rd Normal Form (3NF)

A simple condition for removing anomalies from relations:

A relation R is in 3rd normal form if:

Whenever there is a nontrivial dependency $A_1,\,A_2,\,...,\,A_n\to B$ for $\,R$, then $\,\{A_1,\,A_2,\,...,\,A_n\,\}$ a super-key for R, or B is part of a key.

Tradeoff:

BCNF = no anomalies, but may lose some FDs 3NF = keeps all FDs, but may have some anomalies 13

Relational Algebra

- Formalism for creating new relations from existing ones
- Its place in the big picture:

Relational Algebra

- · Five operators:
 - Union: ∪
 - Difference: -
 - Selection: σ
 - Projection: Π
 - Cartesian Product: ×
- · Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ

15

1. Union and 2. Difference

- R1 ∪ R2
- Example:
 - $Active Employees \cup Retired Employees \\$
- R1 R2
- Example:
 - AllEmployees -- RetiredEmployees

16

What about Intersection?

- It is a derived operator
- $R1 \cap R2 = R1 (R1 R2)$
- Also expressed as a join (will see later)
- Example
 - $-\ Unionized Employees \cap Retired Employees$

3. Selection

- · Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $-\ \sigma_{\scriptscriptstyle Salary \,{}^{\scriptscriptstyle >}\, 40000}(Employee)$
 - $\ \sigma_{\text{\tiny name = "Smithh"}}(Employee)$
- The condition c can be =, <, \le , >, \ge , <

18

Selection Example

Employee

SSN	Name	DepartmentID	Salary
99999999	John	1	30,000
77777777	Tony	1	32,000
88888888	Alice	2	45.000

Find all employees with salary more than \$40,000. $\sigma_{\text{Salary} \sim 40000} \text{(Employee)}$

SSN	Name	DepartmentID	Salary	
88888888	Alice	2	45,000	

19

4. Projection

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - Π_{SSN, Name} (Employee)
 - Output schema: Answer(SSN, Name)

20

Projection Example

Employee

SSN	Name	DepartmentID	Salary
99999999	John	1	30,000
77777777	Tony	1	32,000
88888888	Alice	2	45,000

Π _{SSN, Name} (Employee)

SSN	Name
99999999	John
77777777	Tony
88888888	Alice

21

5. Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: R1 × R2
- Example:
 - Employee × Dependents
- Very rare in practice; mainly used to express joins

22

Cartesian Product Example

Employee

Name	SSN
John	99999999
Tony	77777777

Dependents

Dependents		
EmployeeSSN	Dname	
99999999	Emily	
77777777	Ine	

Employee x Dependents

Name	SSN	EmployeeSSN	Dname
John	999999999	99999999	Emily
John	999999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Relational Algebra

- Five operators:
 - Union: ∪
 - Difference: -
 - Selection: σ
 - Projection: ΠCartesian Product: ×
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural,equi-join, theta join, semi-join)
 - Renaming: ρ

Renaming

- Changes the schema, not the instance
- Notation: $\rho_{B1,...,Bn}(R)$
- Example:
 - $\ \rho_{LastName, \, SocSocNo} \, (Employee)$
 - Output schema:

Answer(LastName, SocSocNo)

25

Renaming Example

 Employee

 Name
 SSN

 John
 99999999

 Tony
 777777777

 $\rho_{\textit{LastName, SocSocNo}}\left(\textbf{Employee}\right)$

LastName	SocSocNo
John	99999999
Tony	77777777

26

Natural Join

• Notation: R1 ⋈ R2

• Meaning: R1 \bowtie R2 = $\Pi_A(\sigma_C(R1 \times R2))$

• Where

- The selection σ_C checks equality of all common attributes
- The projection eliminates the duplicate common attributes

27

Natural Join Example

 Imployee
 SSN

 Name
 SSN

 John
 99999999

 Tony
 777777777

 Dependents

 SSN
 Dname

 999999999
 Emily

 777777777
 Joe

Employee 🖂 Dependents =

 $\Pi_{\text{Name, SSN, Dname}}(\sigma_{\text{SSN=SSN2}}(\text{Employee x }\rho_{\text{SSN2, Dname}}(\text{Dependents}))$

Name	SSN	Dname
John	999999999	Emily
Tony	77777777	Joe

20

Natural Join

S=	В	С
	Z	U
	V	W
	Z	V

• R ⋈ S=

A	В	С
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

29

Natural Join

- Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S?
- Given R(A, B, C), S(D, E), what is $R \bowtie S$?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

Theta Join

- · A join that involves a predicate
- $R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$
- Here θ can be any condition

Eq-join

- A theta join where θ is an equality
- R1 $\bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$
- Example:
 - Employee ⋈_{SSN=SSN} Dependents
- Most useful join in practice

Semijoin

- $R \bowtie S = \prod_{A1,...,An} (R \bowtie S)$
- Where $A_1, ..., A_n$ are the attributes in R
- Example:
 - Employee ⋉ Dependents

Semijoins in Distributed **Databases**

· Semijoins are used in distributed databases

Operations on Bags

A bag = a set with repeated elements

All operations need to be defined carefully on bags

- $\{a,b,b,c\} \cup \{a,b,b,b,e,f,f\} = \{a,a,b,b,b,b,b,c,e,f,f\}$
- $\{a,b,b,b,c,c\} \{b,c,c,c,d\} = \{a,b,b,d\}$
- $\sigma_C(R)$: preserve the number of occurrences
- $\Pi_A(R)$: no duplicate elimination
- · Cartesian product, join: no duplicate elimination Important! Relational Engines work on bags, not sets!

Reading assignment: 5.3 - 5.4

Finally: RA has Limitations!

• Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write C program