Lecture 09:
Friday, October 18, 2002

Outline

• Functional dependencies (3.4)
• Rules about FDs (3.5)
• Design of a Relational schema (3.6)

Functional Dependencies

Definition: A₁, ..., Aₘ → B₁, ..., Bₙ holds in R if:

∀t, t' ∈ R, (t.A₁=t'.A₁ ∧ ... ∧ t.Aₘ=t'.Aₘ ⇒ t.B₁=t'.B₁ ∧ ... ∧ t.Bₙ=t'.Bₙ)

Examples of Keys

• Product(name, price, category, color)
 name, category → price
 category → color

 Keys are: (name, category) and all supersets

• Enrollment(student, address, course, room, time)
 student → address
 room, time → course
 student, course → room, time

 Keys are: [in class]

Formal definition of a key

• A key is a set of attributes A₁, ..., Aₙ s.t. for any other attribute B, A₁, ..., Aₙ → B

• A minimal key is a set of attributes which is a key and for which no subset is a key

• Note: book calls them superkey and key

Finding the Keys of a Relation

Given a relation constructed from an E/R diagram, what is its key?

Rules:
1. If the relation comes from an entity set, the key of the relation is the set of attributes which is the key of the entity set.
Finding the Keys

Rules:
2. If the relation comes from a many-many relationship, the key of the relation is the set of all attribute keys in the relations corresponding to the entity sets.

Expressing Dependencies
Say: “the CreditCard determines the Person”

Inference Rules for FD’s

Inference Rules for FD’s (continued)

A₁, A₂, …, Aᵱ → Bᵱ, B₂, …, Bᵐ

Splitting rule
and Combing rule

A₁, A₂, …, Aᵱ → Bᵱ
A₁, A₂, …, Aᵲ → Bᵲ
...
A₁, A₂, …, Aᵱ → Bᵐ

Trivial Rule

A₁, A₂, …, Aᵱ → Aᵱ

where i = 1, 2, ..., n

Why?
Inference Rules for FD’s (continued)

Transitive Closure Rule

If \(A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \)
and \(B_1, B_2, \ldots, B_m \rightarrow C_1, C_2, \ldots, C_p \)
then \(A_1, A_2, \ldots, A_n \rightarrow C_1, C_2, \ldots, C_p \)

Why?

- Enrollment (student, major, course, room, time)
 - student \(\rightarrow \) major
 - major, course \(\rightarrow \) room
 - course \(\rightarrow \) time

What else can we infer? [in class]

Closure of a set of Attributes

Given a set of attributes \(\{A_1, \ldots, A_n\} \) and a set of dependencies \(S \).
Problem: find all attributes \(B \) such that:
any relation which satisfies \(S \) also satisfies:
\(A_1, \ldots, A_n \rightarrow B \)

The closure of \(\{A_1, \ldots, A_n\} \), denoted \(\{A_1, \ldots, A_n\}^+ \),
is the set of all such attributes \(B \)

Closure Algorithm

Start with \(X = \{A_1, \ldots, A_n\} \).
Repeat until \(X \) doesn’t change do:
if \(B_1, B_2, \ldots, B_n \rightarrow C \) is in \(S \), and
\(B_1, B_2, \ldots, B_n \) are all in \(X \), and
\(C \) is not in \(X \)
then
add \(C \) to \(X \).

Example

\(R(A,B,C,D,E,F) \)

\begin{align*}
A & \rightarrow C \\
A & \rightarrow E \\
B & \rightarrow D \\
A & \rightarrow B
\end{align*}

Closure of \(\{A,B\} \): \(X = \{A, B, \} \)
Closure of \(\{A,F\} \): \(X = \{A, F, \} \)
Why Is the Algorithm Correct?

• Show the following by induction:
 - For every B in X:
 - $A_1, \ldots, A_n \implies B$.
 - Initially $X = \{A_1, \ldots, A_n\}$ -- holds
 - Induction step: B_1, \ldots, B_m in X
 - $A_1, \ldots, A_n \implies B_1, \ldots, B_m$
 - We also have $B_1, \ldots, B_m \implies C$
 - By transitivity we have $A_1, \ldots, A_n \implies C$
 - This shows that the algorithm is sound; need to show it is complete

Relational Schema Design
(or Logical Design)

Main idea:
• Start with some relational schema
• Find out its FD’s
• Use them to design a better relational schema

Relational Schema Design
(or Logical Design)

When a database is poorly designed we get anomalies:
• Redundancy: data is repeated
• Updated anomalies: need to change in several places
• Delete anomalies: may lose data when we don’t want

Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Relational Schema Design

Recall set attributes (persons with several phones):

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies:
• Redundancy = repeat data
• Update anomalies = Fred moves to “Bellvue”
• Deletion anomalies = Fred drops all phone numbers: what is his city?

Relational Schema Design

Conceptual Model:

Relational Model:
plus FD’s

Normalization:
Eliminates anomalies
Decompositions in General

\[R(A_1, ..., A_n) \]

Create two relations \(R_1(B_1, ..., B_m) \) and \(R_2(C_1, ..., C_p) \) such that: \(B_1, ..., B_m \cup C_1, ..., C_p = A_1, ..., A_n \)

and:

\[R_1 = \text{projection of } R \text{ on } B_1, ..., B_m \]
\[R_2 = \text{projection of } R \text{ on } C_1, ..., C_p \]

Incorrect Decomposition

• Sometimes it is incorrect:

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
<td>Gadget</td>
<td>29.99</td>
</tr>
<tr>
<td>Camera</td>
<td>OneClick</td>
<td>24.99</td>
</tr>
<tr>
<td>Gadgets</td>
<td>Gizmo</td>
<td>19.99</td>
</tr>
</tbody>
</table>

Cameras:
- Westfield: 908-555-2121, Fred
- Seattle: 206-555-1234, Joe

Gadgets:
- Westfield: 908-555-2121, Fred
- Seattle: 206-555-1234, Joe

When we put it back:
Cannot recover information.

Normal Forms

First Normal Form (1NF) = all attributes are atomic

Second Normal Form (2NF) = old and obsolete

Third Normal Form (3NF) = this lecture

Boyce-Codd Normal Form (BCNF) = this lecture

Others...

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation \(R \) is in BCNF if:

Whenever there is a nontrivial dependency \(A_1, ..., A_n \rightarrow B \) in \(R \), \(\{A_1, ..., A_n\} \) is a key for \(R \)

In English (though a bit vague):

Whenever a set of attributes of \(R \) is determining another attribute, should determine \textbf{all} the attributes of \(R \).

Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>213-45-6789</td>
<td>206-555-3212</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>213-45-6789</td>
<td>206-555-4567</td>
<td>Seattle</td>
</tr>
<tr>
<td>Jim</td>
<td>303-45-6789</td>
<td>503-555-2134</td>
<td>Woodfield</td>
</tr>
<tr>
<td>Joe</td>
<td>203-45-6789</td>
<td>503-555-1234</td>
<td>Woodfield</td>
</tr>
</tbody>
</table>

What are the dependencies?
SSN \(\rightarrow \) Name, City
What are the keys?
\{Name, SSN, PhoneNumber\}
Is it in BCNF?
Decompose it into BCNF

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

SSN \rightarrow Name, City

Summary of BCNF Decomposition

Find a dependency that violates the BCNF condition:

$A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m$

Heuristics: choose B_1, B_2, \ldots, B_m "as large as possible"

Decompose:

Is there a 2-attribute relation that is not in BCNF?

Continue until there are no BCNF violations left.

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Decompose in BCNF (in class):

Step 1: find all keys

Step 2: now decompose

Other Example

$R(A,B,C,D) \rightarrow A \rightarrow B, B \rightarrow C$

Key: A, D

Violations of BCNF: $A \rightarrow B, A \rightarrow C, A \rightarrow BC$

Pick $A \rightarrow BC$: split into $R_1(A,BC)$, $R_2(A,D)$

What happens if we pick $A \rightarrow B$ first?

Correct Decompositions

A decomposition is lossless if we can recover:

$R(A,B,C)$

\rightarrow Decompose

$R_1(A,B)$, $R_2(A,C)$

\rightarrow Recover

$R'(A,B,C)$ should be the same as $R(A,B,C)$

R' is in general larger than R. Must ensure $R' = R$

Correct Decompositions

Given $R(A,B,C)$ s.t. $A \rightarrow B$, the decomposition into $R_1(A,B)$, $R_2(A,C)$ is lossless
3NF: A Problem with BCNF

<table>
<thead>
<tr>
<th>Unit</th>
<th>Company</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FD's: Unit \(\rightarrow\) Company, Company, Product \(\rightarrow\) Unit
So, there is a BCNF violation, and we decompose.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No FDs</td>
</tr>
</tbody>
</table>

So, there is a BCNF violation, and we decompose.

So What’s the Problem?

<table>
<thead>
<tr>
<th>Unit</th>
<th>Company</th>
<th>Unit</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaga99</td>
<td>UW</td>
<td>Galaga99</td>
<td>databases</td>
</tr>
<tr>
<td>Bingo</td>
<td>UW</td>
<td>Bingo</td>
<td>databases</td>
</tr>
</tbody>
</table>

No problem so far. All local FD's are satisfied.
Let's put all the data back into a single table again:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Company</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Galaga99 | UW | databases |
| Bingo | UW | databases |

Violates the dependency: company, product \(\rightarrow\) unit!

Solution: 3rd Normal Form (3NF)

A simple condition for removing anomalies from relations:

A relation R is in 3rd normal form if:
Whenever there is a nontrivial dependency \(A_1, A_2, ..., A_n \rightarrow B\)
for R, then \(\{A_1, A_2, ..., A_n\}\) a super-key for R,
or B is part of a key.