Lecture 04: SQL

Monday, October 7, 2002

Qutline

¢ Getting around INTERSECT and EXCEPT
* Nulls (6.1.6)

 Outer joins (6.3.8)

» Database Modifications (6.5)

* Defining Relation Schema in SQL (6.6)

* Defining Views (6.7)

INTERSECT and EXCEPT:
Not in SQL Server
(SELECT R.A,R.B SELECT R.A,R.B
FROM R) FROM R
INTERSECT WHERE
(SELECT S.A, S.B EXISTS(SELECT *
FROM S) FROM S
WHERE R.A=S.A and R.B=S.B)
(SELECT R.A,R.B SELECT R.A,R.B
FROM R) FROM R
EXCEPT |:> WHERE
(SELECT S.A, S.B NOT EXISTS(SELECT *
FROM §) FROM S
WHERE R.A=S.A and R.B=S.B)

3

Null Values and Outerjoins

« If x=Null then 4*(3-x)/7 is still NULL

o Ifx=Null then x="Joe” is UNKNOWN
¢ In SQL there are three boolean values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Null Values and Outerjoins

« CIANDC2 = min(Cl, C2)
« Cl OR C2 = max(Cl, C2)

* NOT C1 =1-Cl

SELECT * Eg

FROM Person age=20

WHERE (age < 25) AND heigth=NULL
(height > 6 OR weight > 190)| ~ “eieh=200

Rule in SQL: include only tuples that yield TRUE

Null Values and Outerjoins

Unexpected behavior:

SELECT *
FROM Person
WHERE age <25 OR age >=25

Some Persons are not included !

Null Values and Outerjoins

Can test for NULL explicitly:
— x ISNULL
— xISNOT NULL

SELECT *
FROM Person
WHERE age <25 OR age >=25 OR age IS NULL

Now it includes all Persons

Null Values and Outerjoins

Explicit joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON
Product.name = Purchase.prodName

Null Values and Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

Same as:
SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
But Products that never sold will be lost ! .
Product Purchase
Name Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick Photo Camera Wiz
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz
OneClick NULL 10

Outer Joins

* Left outer join:
— Incluce the left tuple even if there’s no match
* Right outer join:
— Incluce the right tuple even if there’s no match
* Full outer join:
— Include the both left and right tuples even if
there’s no match

Modifying the Database

Three kinds of modifications
* Insertions

 Deletions

» Updates

Sometimes they are all called “updates”

Insertions

General form:

INSERT INTO R(Al,...., An) VALUES (vl,...., vn)I

Example: Insert a new purchase to the database:

INSERT INTO Purchase(buyer, seller, product, store)

‘The Sharper Image’)

VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

Missing attribute — NULL.
May drop attribute names if give them in order.

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

Insertion: an Example

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

Purchase
Product
prodName | buyerName price
name listPrice category o o 200
gizmo 100 gadgets gizmo Smith 80
camera Smith 225

Task: insert in Product all prodNames from Purchase

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase

WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category

gizmo 100 Gadgets

camera

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase

WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category

gizmo 100 Gadgets
camera 200
camera ?? 25 7

<= Depends on the implementatjon

Deletions

Example:

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Updates

Example:

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN
(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999°);

Data Definition in SQL

So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Data types:
Defines the types.

Data definition: defining the schema.
¢ Create tables

* Delete tables
¢ Modify table schema

. 20
Indexes: to improve peformance

Data Types in SQL
* Characters:
— CHAR(20) -- fixed length
— VARCHAR(40) -- variable length
¢ Numbers:

— INT, REAL plus variations
* Times and dates:
— DATE, DATETIME (SQL Server only)
¢ To reuse domains:
CREATE DOMAIN address AS
VARCHAR(55)

21

Deleting or Modifying a Table

Deleting:
Example: | DROP Person; Exercise with care !!

Altering: (adding or removing an attribute).

ALTER TABLE Person
ADD phone CHAR(16);
Example:
ALTER TABLE Person
DROP age;

‘What happens when you make changes to the schema?
23

Creating Tables
Example:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

22

Default Values

Specifying default values:

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,

city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?°,
Birthdate DATE

The default of defaults: NULL 2%

Indexes

REALLY important to speed up query processing time.
Suppose we have a relation

Person (name, age, city)

SELECT *
FROM Person
WHERE name = “Smith”

Sequential scan of the file Person may take long

25

Indexes

* Create an index on name:

/O

GRS
.

| Adam ‘ Betty ‘ Charles ‘ e ‘ Smith ‘ e |

* B+ trees have fan-out of 100s: max 4 levels !

Creating Indexes

Syntax:

CREATE INDEX namelndex ON Person(name) I

27

Creating Indexes

Indexes can be created on more than one attribute:

CREATE INDEX doubleindex ON
Example: Person (age, city)

SELECT *
Helps in: FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT *
But not in: FROM Person
WHERE city = “Seattle”

Creating Indexes

Indexes can be useful in range queries too:

CREATE INDEX agelndex ON Person (age) I

B+ trees help in: | SELECT *
FROM Person
WHERE age > 25 AND age <28

Why not create indexes on everything?

29

Defining Views
Views are relations, except that they are not physically stored.
For presenting different information to different users

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

Payroll has access to Employee, others only to Developers
30

A Different View

Person(name, city)
Purchase(buyer, seller, product, store)
Product(name, maker, category)

CREATE VIEW Seattle-view AS

SELECT buyer, seller, product, store

FROM Person, Purchase

WHERE Person.city = “Seattle” AND
Person.name = Purchase.buyer

We have a new virtual table:
Seattle-view(buyer, seller, product, store)

A Different View

We can later use the view:

SELECT name, store

FROM Seattle-view, Product

WHERE Seattle-view.product = Product.name AND
Product.category = “shoes”

What Happens When We Query
a View ?

SELECT name, Seattle-view.store

FROM Seattle-view, Product

WHERE Seattle-view.product = Product.name AND
Product.category = “shoes”

v

SELECT name, Purchase.store

FROM Person, Purchase, Product

WHERE Person.city = “Seattle” AND
Person.name = Purchase.buyer AND
Purchase.poduct = Product.name AND
Product.category = “shoes” 33

Types of Views

* Virtual views:
— Used in databases
— Computed only on-demand — slow at runtime
— Always up to date
* Materialized views
— Used in data warehouses
— Precomputed offline — fast at runtime
— May have stale data

Updating Views
How can I insert a tuple into a table that doesn’t exist?

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

If we make the
following insertion:

INSERT INTO Developers
VALUES(“Joe”, “Optimizer™)

INSERT INTO Employee

It becomes:
VALUES(NULL, “Joe”, NULL, “Optimizer”, NULL)

Non-Updatable Views

CREATE VIEW Seattle-view AS

SELECT seller, product, store

FROM Person, Purchase

WHERE Person.city = “Seattle” AND
Person.name = Purchase.buyer

How can we add the following tuple to the view?
(“Joe”, “Shoe Model 12345”, “Nine West”)

We need to add “Joe™ to Person first, but we don’t have all its attributes

