
1

1

Introduction to Database Systems
CSE 444

Lecture #1

September 30, 2002

2

Staff
• Instructor: Dan Suciu

– Sieg, Room 318, suciu@cs.washington.edu
– Office hours: Monday, 11:30-12:30
– (or by appointment)

• TA: Yana Kadiyska
– yana@cs.washington.edu
– Office hours: TBA (check mailing list)

3

Communications
• Web page:

http://www.cs.washington.edu/444/

• Mailing list: send email to
majordomo@cs
saying:
subscribe cse444

4

Textbook(s)

Main textbook, available at the bookstore:
• Database Systems: The Complete Book, Hector

Garcia-Molina, Jeffrey Ullman, Jennifer Widom

Almost identical, and also available at the bookstore:
• A First Course in Database Systems, Jeff Ullman

and Jennifer Widom
• Database Implementation, Hector Garcia-Molina,

Jeff Ullman and Jennifer Widom

5

Other Texts

On reserve at the Engineering Library:
• Database Management Systems, Ramakrishnan

– very comprehensive

• Fundamentals of Database Systems, Elmasri, Navathe
– very widely used

• Foundations of Databases, Abiteboul, Hull, Vianu
– Mostly theory of databases

• Data on the Web, Abiteboul, Buneman, Suciu
– XML and other new/advanced stuff

6

Other Required Readings

There will be reading assignments from the Web:

• SQL for Web Nerds, by Philip Greenspun,
http://philip.greenspun.com/sql/

• Others, especially for XML

For SQL, a good source of information is the
MSDN library (on your Windows machine)

2

7

Outline for Today’s Lecture

• Overview of database systems
– Reading assignment for next lecture

(Wednesday): from SQL for Web Nerds, by
Philip Greenspun, Introduction
http://philip.greenspun.com/sql/

• Course Outline

• Structure of the course

8

What Is a Relational Database
Management System ?

Database Management System = DBMS

Relational DBMS = RDBMS

• A collection of files that store the data

• A big C program written by someone else
that accesses and updates those files for you

9

Where are RDBMS used ?

• Backend for traditional “database”
applications

• Backend for large Websites

• Backend for Web services

10

Example of a Traditional
Database Application

Suppose we are building a system

to store the information about:

• students

• courses

• professors

• who takes what, who teaches what

11

Can we do it without a DBMS ?

Sure we can! Start by storing the data in files:

students.txt courses.txt professors.txt

Now write C or Java programs to implement
specific tasks

12

Doing it without a DBMS...

• Enroll “Mary Johnson” in “CSE444”:

Read ‘students.txt’
Read ‘courses.txt’
Find&update the record “Mary Johnson”
Find&update the record “CSE444”
Write “students.txt”
Write “courses.txt”

Read ‘students.txt’
Read ‘courses.txt’
Find&update the record “Mary Johnson”
Find&update the record “CSE444”
Write “students.txt”
Write “courses.txt”

Write a C program to do the following:

3

13

Problems without an DBMS...

• System crashes:

– What is the problem ?

• Large data sets (say 50GB)
– What is the problem ?

• Simultaneous access by many users
– Need locks: we know them from OS, but now data on disk;

and is there any fun to re-implement them ?

Read ‘students.txt’
Read ‘courses.txt’
Find&update the record “Mary Johnson”
Find&update the record “CSE444”
Write “students.txt”
Write “courses.txt”

Read ‘students.txt’
Read ‘courses.txt’
Find&update the record “Mary Johnson”
Find&update the record “CSE444”
Write “students.txt”
Write “courses.txt”

CRASH !

14

Enters a DMBS

Data files

Database server
(someone else’s

C program) Applications

connection

(ODBC, JDBC)

“Two tier database system”

15

Functionality of a DBMS

The programmer sees SQL, which has two components:
• Data Definition Language - DDL
• Data Manipulation Language - DML

– query language

Behind the scenes the DBMS has:
• Query optimizer
• Query engine
• Storage management
• Transaction Management (concurrency, recovery) 16

Functionality of a DBMS

Two things to remember:

• Client-server architecture
– Slow, cumbersome connection
– But good for the data

• It is just someone else’s C program
– In the beginning we may be impressed by its speed
– But later we discover that it can be frustratingly slow
– We can do any particular task faster outside the DBMS
– But the DBMS is general and convenient

17

How the Programmer Sees the
DBMS

• Start with DDL to create tables:

• Continue with DML to populate tables:

CREATE TABLE Students (
Name CHAR(30)
SSN CHAR(9) PRIMARY KEY NOT NULL,
Category CHAR(20)

) . . .

CREATE TABLE Students (
Name CHAR(30)
SSN CHAR(9) PRIMARY KEY NOT NULL,
Category CHAR(20)

) . . .

INSERT INTO Students
VALUES(‘Charles’, ‘123456789’, ‘undergraduate’)
. . . .

INSERT INTO Students
VALUES(‘Charles’, ‘123456789’, ‘undergraduate’)
. . . .

18

How the Programmer Sees the
DBMS

• Tables:

• Still implemented as files, but behind the scenes can
be quite complex

��� ���� �����	
�

�
��������� ���
��� ����
�
��

���������� ��� �
��

� �

��� ���

�
��������� �� ���

�
��������� �� ���

���������� �� ��

�

Students: Takes:

���! ����! "��
��
!

�� ���! ����#����! $���!

�� ���! %&�
��'��!�������! ('���
!
!

Courses:

“data independence” = separate logical view
from physical implementation

4

19

Transactions

• Enroll “Mary Johnson” in “CSE444”:
BEGIN TRANSACTION;

INSERT INTO Takes
SELECT Students.SSN, Courses.CID
FROM Students, Courses
WHERE Students.name = ‘Mary Johnson’ and

Courses.name = ‘CSE444’

-- More updates here....

IF everything-went-OK
THEN COMMIT;

ELSE ROLLBACK

BEGIN TRANSACTION;

INSERT INTO Takes
SELECT Students.SSN, Courses.CID
FROM Students, Courses
WHERE Students.name = ‘Mary Johnson’ and

Courses.name = ‘CSE444’

-- More updates here....

IF everything-went-OK
THEN COMMIT;

ELSE ROLLBACK

If system crashes, the transaction is still either committed or aborted 20

Transactions

• A transaction = sequence of statements that
either all succeed, or all fail

• Transactions have the ACID properties:
A = atomicity

C = consistency

I = independence

D = durability

21

Queries

• Find all courses that “Mary” takes

• What happens behind the scene ?
– Query processor figures out how to answer the

query efficiently.

SELECT C.name
FROM Students S, Takes T, Courses C
WHERE S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

SELECT C.name
FROM Students S, Takes T, Courses C
WHERE S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

22

Queries, behind the scene

Imperative query execution plan:

SELECT C.name
FROM Students S, Takes T, Courses C
WHERE S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

SELECT C.name
FROM Students S, Takes T, Courses C
WHERE S.name=“Mary” and

S.ssn = T.ssn and T.cid = C.cid

Declarative SQL query

Students Takes

sid=sid

sname

name=“Mary”

cid=cid

Courses

The optimizer chooses the best execution plan for a query

23

Database Systems

• The big commercial database vendors:
– Oracle
– IBM (with DB2) bought Informix recently
– Microsoft (SQL Server)
– Sybase

• Some free database systems (Unix) :
– Postgres
– Mysql
– Predator

• In CSE444 we use SQL Server. You may use
something else, but you are on your own. 24

New Trends in Databases

• Object-relational databases

• Main memory database systems

• XML XML XML !
– Relational databases with XML support

– Middleware between XML and relational databases

– Native XML database systems

– Lots of research here at UW on XML and databases

• Peer to peer, stream data management – still research

5

25

Course Outline
(may vary slightly)

Part I
• SQL (Chapter 7)
• The relational data model (Chapter 3)
• Database design (Chapters 2, 3, 7)
• XML, XPath, XQuery
Midterm: November 1st

Part II
• Data storage, indexes (Chapters 11-13)
• Query execution and optimization (Chapter 15,16)
• Recovery (Chapter 17)
Final: December 13th

26

Structure

• Prerequisites: Data structures course (CSE-326 or
equivalent).

• Work & Grading:
– Homework 25%: 6 of them, some light programming.

– Project: 25% - see next.

– Midterm: 20%

– Final: 25%

– Intangibles: 5%

27

The Project

• Goal: design end-to-end database application.

• Work in groups of 3-4 (start forming now).

• Topic: design a multi-user calendar:
– Store the data in a DBMS (SQL Server)

– Implement a Web interface to it

– Implement a Webservice over it

28

The Project

• Grading based on:
– Functionality (the more the better) (say 80%)

– Implementation, efficiency (say 20%)

• There will be some milestones to turn in during the
quarter
– We want to make sure that you make progress

– Do not necessarily expect feedback: ask, if you need
feedback

29

The Project

Alternative topics:
• You may choose any different topic; e.g. from here:

– http://abstract.cs.washington.edu/~zahorjan/481-
02au/cse-access/overview.cgi

• It needs to include all three components:
– A Database
– A Website
– A Webservice

• You need to write a 1-2 page proposal and turn it in
• But you are at your own risk (i.e. we offer little

support, and grading may be less predicatble) 30

So what is this course about,
really ?

• SQL:
– An old language, but still cute

• Newer, XML stuff
– Unfortunately less programming here

• Theory !

• Lots of implementation and hacking !
– And you need to learn a lot while you go

