Introduction to Database Systems

CSE 444

Lecture #8 Jan 29 2001

Functional Dependencies

Reading: Chapter 3.5, 3.6, 3.7

Mapping ER Diagram to Relations

#Entity mapped to a relation
#Many-many relationship mapped to a relation
#Some columns will be NULL-able
#May be possible to combine relations
Many-to-one relationships
Danger of redundancy: delete/update inconsistencies

Example

Crinker(name, addr) and Favorite(drinker, beer) combined as:
Drinker_info(name, addr, choice_beer)
Can you combine Drinker(name, addr)

and Likes(drinker, beer)?

Need for Schema Refinement

ℜResulting schema may have redundancy
 ☑ Inaccurate E-R modeling
 ☑ Inappropriate combination of relations during mapping

- %Functional Dependency provides a mathematical tool to detect redundancy
- #Decomposition to ensure that schema does not suffer from redundancy

Example					
	() (D)	Employees	osition		
En	npID	Name	Phone	Position	
E0	045	Smith	1234	Clerk	
E1	847	John	9876	Salesrep	
E1	111	Smith	9876	Salesrep	
E9	999	Mary	1234	lawyer	
					7

Closure of a set of Attributes

Given a set of attributes $A = \{A1, ..., An\}$ and a set of dependencies S.

Closure(A) is the set of all attributes B such that: any relation which satisfies S also satisfies:

A1, ..., An -> B

1. Closure(A) is a subset of all FDs implied

2. For a relation R(A) and a key B of R(A): What is the relationship between closure (B) and A?

13

15

Example

Crinkers (<u>name</u>, addr, <u>likesbeer</u>, manuf, favbeer)
What are the <a>Keys?

⊡Superkeys?

Closure Algorithm Start with X={A1, ..., An}. Repeat until X doesn't change do: if $B_1, B_2 ... B_n \longrightarrow C$ is in S, and $B_1, B_2 ... B_n$ are all in X, and C is not in X then add C to X.

$\begin{array}{c} \textbf{A} \textbf{B} \longrightarrow \textbf{C} \\ \textbf{A} \textbf{D} \longrightarrow \textbf{E} \end{array}$		
$\begin{array}{ccc} B & \longrightarrow & D \\ A & F & \longrightarrow & B \end{array}$		
Closure of $\{A,B\}$: $X = \{A, B, $	}	
Closure of $\{A, F\}$: $X = \{A, F,$	}	
		17

Example #AB -> C, C->D, D->A #Any "interesting" consequences?

18

Why Is the Algorithm Correct ?

\$\$ Show the following by induction: □For every B in X: □A1, ..., An → B \$\$ Initially X = {A1, ..., An} -- holds \$\$ Induction step: B1, ..., Bm in X □Implies A1, ..., An → B1, ..., Bm □We also have B1, ..., Bm → C □By transitivity we have A1, ..., An →•C \$\$ This shows that the algorithm is *sound*; need to show it is *complete*

Relational Schema Design

Main idea: #Start with initial relational schema #Find out implied FD-s #Use them to design a better relational schema

20

What is interesting about BCNF?

KNo redundancy due to FD-s
 KNo update anomalies
 △Only one (unique) occurrence of a fact is updated
 KNo deletion anomalies

4

24

Recall set attributes (p	persons with sever	al phones):
Name	SSN	Phone Number
Fred	123-321-99	(201) 555-1234
Fred	123-321-99	(206) 572-4312
Joe	909-438-44	(908) 464-0028
Joe	909-438-44	(212) 555-4000
roblems:		
- redundancy	Note	: SSN is NOT a key here

	55N	Phone Number
Fred	123-321-99	(201) 555-1234
Fred	123-321-99	(206) 572-4312
Joe	909-438-44	(908) 464-0028
Joe	909-438-44	(212) 555-4000
at are the depe	endencies?	

And Now?		
SSN	Name	
123-321-99	Fred	
909-438-44 SSN	Joe	Number
123-321-99	(201	555-1234
123-321-99	(206)) 572-4312
909-438-44	(908)	464-0028
909-438-44	(212)) 555-4000

What Abo	out This?	
Name	Price	Category
Gizmo	\$19.99	gadgets
Question: Find an example o	f a 2-attribute relation	n that is not in BCNF.
		31

Example

33

35

% Decompose: Studio(studio, president, pres_addr), Movie (title, year, studio) % Decompose again? Projecting FD
Given F over R, what is the FD that must hold over S, where S is obtained by decomposition?
Compute closure(X) for each subset X of S
X-> B holds in S if
I B in Closure(X)
I B in closure(X)
I B not in X
See Examples 3.39 and 3.40 in text

Decomposition Based on BCNF is Information Preserving

Attributes A, B, C. FD: $A \rightarrow C$
Relations R1[A,B] R2[A,C]
Tuples in R1: (a,b) , (a,b')
Tuples in R2: (a,c), (a,c')
Tuples in the join of R1 and R2: (a,b,c), (a,b,c'), (a,b',c), (a,b',c')
Can (a,b,c') be a bogus tuple? What about (a,b',c') ?

Problems with Decompositions

#There are three potential problems to consider:

- * Some queries become more expensive.
 - ⊠e.g., find employee and department names
- If the second second
- ☑Checking some dependencies may require joining the instances of the decomposed relations.
 ☑BCNF decomposition example

#Tradeoff: Must consider these issues vs. redundancy.

Summary of Schema Refinement

- #If a relation is in BCNF, it is free of redundancies that can be detected using FDs.
- #If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations:
 - $\ensuremath{\boxtimes}\xspace{\ensuremath{\mathsf{Lossless}}\xspace{\ensuremath{\mathsf{space}}\xspace{\ensuremath{space}}\xspace{\ensuremath{\mathsf{space}}\xspace{\ensuremath{\mathsf{space}}\xspace{\ensuremath{space}\ensuremath{space}\ensuremath{space}\xspace{\ensuremath{space}}\xspace{\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensu$
 - □Lossless-join decomposition into BCNF *is* always possible □Lossless-join, dependency preserving decomposition into 3NF *is* always possible
 - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.
 - $\hfill \ensuremath{\square}\ensuremath{\mathsf{Various}}$ decompositions of a single schema are possible.