
1

Introduction to Database
Systems

CSE 444

Lecture #6
Jan 22 2001

2

Announcements – I

aProgramming Assignment due on
Thu (1/25)

3

Using SQL in Applications

Reading: Section 7
(except 7.2, 7.4 – to be covered later)

4

Using SQL in Applications
aBusiness logic involves
`Language Issues
⌧Application code in a development language

(Java, C++, Visual Basic)

`Client-Server communication
⌧Application connects and “does work” at

database server

5

Language Issues

aData Type issues (Mapping of Types)
aReconcile Explicit iteration in

Programming Language with set-oriented
processing in SQL (Cursors)
aSQL generated on-the-fly (Dynamic SQL)

6

SQL Generated On-the-fly

aStatic SQL without parameters:
`Select * from Students

aStatic SQL with parameters
`Select * from students where

Student_name = :sname

aDynamic SQL
` An arbitrary string that represents a SQL statement
` Statement created at runtime

2

7

Processing SQL

aKey Steps
`Parse SQL
`Validate SQL against system catalog
`Generate an “execution plan”
`Optimize the execution plan
`Execute the plan

8

Implication for
SQL generated on-the-fly

aStatic SQL
`Execution plan may be generated at

compilation time

aStatic SQL with parameters
`Almost as above

aDynamic SQL
`Compile time optimization not possible

9

Handling Dynamic SQL

aRuntime optimization
`Compile only once at runtime
`Execute multiple times

aRoughly:
`Prepare statement_name from

statement_variable
`Execute statement_name using arg [, arg]

10

Client Server
Communication

aEmbedded SQL
aCall Level Interface

11

Embedded SQL

aEmbed SQL statements in a host language
program
`Variables from the application program can

be used in the SQL statement (host variables)
`Processed by a SQL Preprocessor
`Use cursors for multi-row output
`Structure to return errors (SQLCA)

12

Compiling Embedded SQL

aEmbedded SQL submitted to precompiler
`One Precompiler/language supported by DBMS

aPrecompiler produces 2 files
`Source code + proprietary calls to DBMS routines
`Database Request Module (all SQL statements)

aNext Steps
`Source code => object file, Linker links object files +

library routines
`Binding utility generates executable SQL

aExecute!

3

13

Embedded SQL –
Using Host Variables
Void simpleInsert() {

EXEC SQL BEGIN DECLARE SECTION;
char n[20], c[30]; /* product-name, company-name */
int p, q; /* price, quantity */
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

/* get values for name, price and company somehow */

EXEC SQL INSERT INTO Product(pname, price, quantity, maker)
VALUES (:n, :p, :q, :c);

}

14

Embedded SQL –
Single-Row Select Statements

int getPrice(char *name) {

EXEC SQL BEGIN DECLARE SECTION;
char n[20];
int p;
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

strcpy(n, name); /* copy name to local variable */

EXEC SQL SELECT price INTO :p
FROM Product
WHERE Product.name = :n;

return p;
}

15

Embedded SQL - Cursors

void product2XML() {
EXEC SQL BEGIN DECLARE SECTION;

char n[20], c[30];
int p, q;
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE crs CURSOR FOR
SELECT pname, price, quantity, maker
FROM Product;

EXEC SQL OPEN crs;

16

Embedded SQL – Cursors (2)

printf(“<allProducts>\n”);
while (1) {

EXEC SQL FETCH FROM crs INTO :n, :p, :q, :c;
if (NO_MORE_TUPLES) break;
printf(“ <product>\n”);
printf(“ <name> %s </name>\n”, n);
printf(“ <price> %d </price>\n”, p);
printf(“ <quantity> %d </quantity>\n”, q);
printf(“ <maker> %s </maker>\n”, c);
printf(“ </product>\n”);

}
EXECT SQL CLOSE crs;
printf(“</allProducts>\n”);

}

17

Embedded SQL –
Dynamic SQL

Void someQuery() {
EXEC SQL BEGIN DECLARE SECTION;
char *command=“UPDATE Product SET quantity=quantity+1
WHERE name=“gizmo”
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE myquery FROM :command;

EXEC SQL EXECUTE myquery;
}
myquery = a SQL variable, does not need to be prefixed by “:”

18

Call Level Interface (CLI)

aProvides a library of DBMS functions
`Like string, I/O,..

aApplication calls CLI routines on the local
system
`Calls are sent to DBMS for processing

aWhat’s different from embedded SQL?
`Embedded SQL has undocumented calls

4

19

Using CLI

aApplication calls a CLI function to connect
to DBMS
aApplication builds a SQL statement in

buffer
aCalls CLI functions to send the statement

to DBMS
aCalls CLI functions to get result rows
aDisconnect from DBMS

20

ODBC as CLI

aStandardize DBMS function calls
aHelps applications access multiple DBMS
`Using same source without recompiling/relinking
`Simultaneously

aNeeds libraries (database drivers) on clients
`For example, on Windows, different DLL for each

DBMS
aDefines a standard SQL grammar
`Driver may do conversion

21

ODBC as CLI (2)

aDriver manager to ease the job of
multiple connections
`Use connection handles

aSupports “large” number of DBMS
features without requiring support for all
`SQLGetInfo and SQLGetFunctions

aInsulate applications from DBMS changes
`Upgrade drivers

22

ODBC Details
aSQLDriverConnect -- opens a connection
aSQLExecDirect -- executes a sql statement
aSQLBindCol -- binds a program variable to a

column in the result of a SQL statement
aSQLFetch -- fetches the next row in the current

result set
aSQLMoreResults -- returns true if more result

sets are yet to be consumed (e.g., useful for a
batch of queries)

aSQLError -- returns information about the last
error (for the specified connection)

23

Stored Procedures

aExecute an application program at server
aDBMS Specific language
`PL/SQL (Oracle)
`T-SQL stored Procedure (Microsoft)

aPioneered by Sybase
aAdvantage
`Reduce data transmission

24

SQL – More to Come

aYet to come
`Create base and temporary tables
`Constraints and Triggers
`Security
`Transactions

aWill be covered after Database Schema
Design

5

25

Data Definition in SQL

So far, SQL operations on the data.
Data Manipulation Language (DML)

Data definition: defining the schema.
Data Definition Language (DDL)

• Define data types
• Create/delete/modify tables
• Create/delete indexes

26

Data Types in SQL

• Character strings (fixed of varying length)
• Bit strings (fixed or varying length)
• Integer (SHORTINT)
• Floating point
• Dates and times

Domains will be used in table declarations.

To reuse domains:

CREATE DOMAIN address AS VARCHAR(55)

27

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INTEGER,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

28

Temporary Tables

aCREATE LOCAL
TEMPORARY TABLE
Temp_Person (..)

aPopulate using
INSERT INTO

aDeleted at the end of
every “transaction”

aCREATE GLOBAL
TEMPORARY TABLE
Temp_Person (..)

aPopulate using
INSERT INTO

aPersists for the
connection

29

Deleting or Modifying a
Table

DROP TABLE Person;
DELETE FROM Person

/*What’s the difference? */

Altering:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

30

Default Values

The default of defaults: NULL

Specifying default values:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INTEGER,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT “Seattle”,
gender CHAR(1) DEFAULT “?”,
birthdate DATE)

6

31

Database Schema Design

Today’s Reading:

Sec 2 (except 2.1 and ODL
discussions) and
Sec 3.1- 3.4 (except 3.1)

32

Database Design

aWhy do we need it?
` Agree on structure of the database before

deciding on a particular implementation.

aConsider issues such as:
`What entities to model
`How entities are related
`What constraints exist in the domain
`How to achieve good designs

33

Overview of Database
Design

aConceptual design: (ER Model is used at this stage.)
`ER Diagram

⌧What are the entities and relationships in the enterprise?
⌧What are the integrity constraints or business rules that hold?

`Map an ER diagram into a relational schema

aSchema Refinement (Normalization):
`Check relational schema for redundancies and related

anomalies.

aPhysical Design:
`Determine physical structures

34

ER Model
Basics

aEntity: Real-world object distinguishable from
other objects. An entity is described (in DB)
using a set of attributes.

aEntity Set: A collection of similar entities. E.g.,
all employees.
`All entities in an entity set have the same set of

attributes.

`Each entity set has a key.
`Each attribute has a domain.

Employees

ssn
name

lot

35

ER Model Basics

aRelationship: Association among two or more
entities. E.g., Ed works in Pharmacy department.
`Can have attributes to describe how entities are related

aRelationship Set: Collection of similar relationships.

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Workers

subor-
dinate

super-
visor

ssn

36

What is a Relationship ?

aA mathematical definition:
`if A, B are sets, then a relation R is a subset

of A x B
aA={1,2,3}, B={a,b,c,d},

R = {(1,a), (1,c), (3,b)}

- makes is a subset of Product x
Company:

1

2

3

a

b

c

d

A=

B=

makes Company
Product

7

37

Multiplicity of E/R
Relationships

aone-one:

amany-one

amany-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

38

Multi-way Relationships

How do we model a purchase relationship between buyers,
products and stores?

Purchase

Product

Person

Store

Can still model as a mathematical set (how ?)

39

Roles in Relationships

Purchase

What if we need an entity set twice in one relationship?

Product

Person

Store

salesperson buyer

40

Attributes on Relationships

Purchase

Product

Person

Store

date

41
address name ssn

Person

buys

makes

employs

Company
Product

name category

stockprice

name

price

42

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

Moral:
Find a nice way
to say things.

date

8

43

Recap: Conceptual Design

aConceptual design follows requirements
analysis:
`Yields a high-level description of data to be stored

aER model popular for conceptual design
`Constructs are expressive, close to the way people

think about their applications.

aBasic constructs: entities, relationships, and
attributes (of entities and relationships).
aNote: There are many variations on ER model.

44

Recap: Conceptual Design
Using the ER Model

aDesign choices:
`Should a concept be modeled as an entity or an

attribute?
`Should a concept be modeled as an entity or a

relationship?
`Identifying relationships: Binary or ternary?

45

Design Choices:
Entity vs. Attribute

aShould address be an attribute of Employees or an
entity (connected to Employees by a relationship)?

aDepends upon the use we want to make of address
information, and the semantics of the data:

⌧If we have several addresses per employee, address
must be an entity (since attributes cannot be set-
valued).
⌧If the structure (city, street, etc.) is important, e.g., we

want to retrieve employees in a given city, address must
be modeled as an entity (since attribute values are
atomic).

46

Entity vs. Attribute
(Contd.)

aWorks_In2 does not
allow an employee to
work in a department
for two or more periods.

a Similar to the problem
of wanting to record
several addresses for an
employee: we want to
record several values of
the descriptive attributes
for each instance of this
relationship.

name

Employees

ssn lot

Works_In2

from to
dname

budgetdid

Departments

dname
budgetdid

name

Departments

ssn lot

Employees Works_In3

Durationfrom to

47

Design Choice
Entity vs. Relationship

a First ER diagram OK if
a manager gets a
separate discretionary
budget for each dept.

aWhat if a manager gets
a discretionary budget
that covers all
managed depts?
` Redundancy of dbudget,

which is stored for each
dept managed by the
manager.

Manages2

name dname
budgetdid

Employees Departments

ssn lot

dbudgetsince

Employees

since

name dname
budgetdid

Departments

ssn lot

Mgr_Appts

Manages3

dbudget
apptnumMisleading: suggests dbudget

tied to managed dept. 48

Comments on ER Models

aER design is subjective. There are often many
ways to model a given scenario! Analyzing
alternatives can be tricky, especially for a large
enterprise. Common choices include:
`Entity vs. attribute, entity vs. relationship, binary or n-

ary relationship, roles, etc.
aNeed to model constraints on data
`To follow ..

