
1

Introduction to Database
Systems

CSE 444

Lecture #4
Jan 17 2001

2

Announcements – I

aSpecial Lecture
`At Sieg 134 on Friday January 19th

from 330-450PM
`Topic: Building SQL Applications
`Important For
⌧Programming Assignment
⌧Course Project

3

Announcement II

aHomework Due Today
aProgramming Assignment available
`Due in a week
`Goal
⌧More experience in SQL
⌧Building applications using SQL
⌧Incentive to build front-end

aMid Term
`In Class
`All material except Transactions

4

SQL (Contd.)

Reading:

Sec 5 (except 5.10)

Sec 7 (except 7.2 – to be covered later)

5

Views

aA view is just a relation, but we store a
definition (query), rather than a set of
tuples.

⌧Can rename columns

CREATE VIEW YoungActiveStudents (Yname, Ygrade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

� Views can be dropped using the DROP VIEW command.

6

Uses for Views

aViews can be used to present necessary
information (or a summary), while
hiding details in underlying relation(s)
(security).
aViews also useful for maintaining logical

data independence when the
conceptual schema changes.
aMay be used to precompute results

2

7

Views vs. Relations

aLogical distinctions:
`Updates not always possible to a view
`View updates must be unambiguously mappable

to base relation updates in order to be allowed

aPhysical distinctions:
`Relations must be physically stored somewhere
`Views are logical entities

8

Is it possible to rewrite
using Views?

SELECT Product.Company
FROM Product
WHERE Product.company = “Bazzar”

AND Product.name IN
(SELECT product
FROM Purchase
WHERE buyer = “Joe Blow”);

Find companies who manufacture products bought by Joe Blow.

9

Is it possible to rewrite
using Views?

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=“Gizmo-Works”)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

10

Is it possible to rewrite
using Views?

Product (pname, price, category, maker, year)

aFind products (and their manufacturers) that are
more expensive than all products made by the
same manufacturer before 1972

SELECT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND

y.year < 1972);

11

Null Values

aIf x=Null then 4*(3-x)/7 is still NULL

aIf x=Null then x=“Joe” is UNKNOWN
aThree boolean values:
`FALSE = 0
`UNKNOWN = 0.5
`TRUE = 1

12

Null Values

aC1 AND C2 = min(C1, C2)
aC1 OR C2 = max(C1, C2)
aNOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

Rule in SQL: include only tuples that yield TRUE

3

13

Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some Persons are not included !

14

Null Values

Can test for NULL explicitly:
`x IS NULL
`x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

OR age IS NULL

Now it includes all Persons

15

Notation for Join in SQL92

Explicit joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Same as:
SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

But Products that never sold will be lost !
16

Outerjoin

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

17

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

-OneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

Example of Outerjoin

18

Modifying the Database

Insert a new purchase to the database:

INSERT INTO Purchase(buyer, seller, product_name, store)
VALUES (“Joe”, “Fred”, “gizmo”, “GizmoStore”)

4

19

Insertion Exploiting Query

INSERT INTO PRODUCT (product_name, store)
SELECT DISTINCT product_name, store
FROM Purchase
WHERE product NOT IN

(SELECT name
FROM Product)

Schema: Purchase(buyer, seller, product_name, store)
Product (product_name, store)

Note the order of querying and inserting.
20

Deletion

DELETE FROM PURCHASE
WHERE seller = “Joe” AND

product = “Brooklyn Bridge”

Factoid about SQL: there is no way to delete only a single
occurrence of a tuple that appears twice in a relation.

21

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Sales
WHERE Date = today);

22

Updating Views

aNeed to be able to update base relations such
that result of view reflects update

aFormal Definition of “updateable” views is
complex

aExample of “updateable” views
`Simple selection OK
`Use of DISTINCT not allowed
`Self-referential selection condition not allowed

23

Updating Complex Views

How can I insert a tuple into a table that doesn’t exist?

CREATE VIEW bon-purchase AS
SELECT store, seller, product
FROM Purchase
WHERE store = “The Bon Marche”

If we make the following insertion:

INSERT INTO bon-purchase
VALUES (“the Bon Marche”, Joe, “Denby Mug”)

We can simply add a tuple
(“the Bon Marche”, Joe, NULL, “Denby Mug”)

to relation Purchase. 24

Example of Non-Updatable
Views

CREATE VIEW Seattle-view AS

SELECT seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

How can we add the following tuple to the view above?
Think about null semantics..

(Joe, “Shoe Model 12345”, “Nine West”)

5

25

Using SQL in Applications

26

Using SQL in Applications
aBusiness logic involves
`Multiple SQL queries
`Application code in a development

language (Java, C++, Visual Basic)
`Code may need to be executed
⌧At Client/Middle-Tier
⌧At server

27

Using SQL in Applications
(2)

aData Type issues (Mapping of Types)
aReconcile Explicit iteration in

Programming Language with set-oriented
processing in SQL (Cursors)
aSQL generated on-the-fly (Dynamic SQL)
aConnectivity of client code to database

server

28

Mapping Types

achar=> character (length, char set)
avarchar=> character varying (length, char

set)
ashort=> smallint
aLong=> integer
aFloat=> real
aDouble= double precision

29

Getting Data Out

aApplication languages deals with a row at
a time
`Not set of rows

aHow to consume result of a SQL query?
aSQL supports cursors
`Like a pointer that traverses a collection of

rows one at a time

30

Cursors

1. Declare the cursor
2. Open the cursor
3. Fetch rows one by one
4. Update/Delete “current” tuples
5. Close the cursor

6

31

Declare - Example

Declare cursor1 cursor for
Select current_sales_price, our_cost
From movie_titles
Where current_sales_price > :minprice
Order By current-Sales_price

32

Open/Fetch/Close

Open cursor_name

Fetch [Next| Prior| First | Last | Absolute
<k> | Relative <k>] cursor_name into
:struct1

Close cursor_name

33

Update/Delete

Delete from table_name
where current of cursor_name

Update table_name Set set_list
where current of cursor_name

Update movie_titles Set our_cost = our_cost/2
where current of cursor1

34

Revisiting Declare

aDECLARE cursor-name
`[INSENSTIVE] [SCROLL] CURSOR FOR
`Query_expression
`ORDER BY sort_expression
`updatability

35

Declare (Contd)

aUpdatability
`Read Only – no update/delete on cursor

allowed
`Update restricted to specific fields
⌧For Update of column_name [, column_name]
⌧Declare cursor1 cursor for

Select current_sales_price, our_cost
From movie_titles
For update of current_sales_price

36

Declare (Contd)

aInsensitive
`Cursor fetches all movies with cost > x
`Fetch n records
`Reduce cost of all movies by 20%
`What records do you see next?
⌧Same as above

aIndeterminant

7

37

Declare (Contd)

aScrollable Cursors
`Additional syntax in Fetch enabled
`Otherwise, only “next” tuple is available
`But scroll forces cursor to be read-only!

38

Connectivity - ODBC

aClient needs to establish a connection to
server
`Generates connection handle - unique

identification
aExecute statements
`Statement Handle with each – unique

identification
aODBC - Call level interface (CLI) to SQL

stores

39

ODBC Details
aSQLDriverConnect -- opens a connection
aSQLExecDirect -- executes a sql statement
aSQLBindCol -- binds a program variable to a

column in the result of a sql statement
aSQLFetch -- fetches the next row in the current

result set
aSQLMoreResults -- returns true if more result

sets are yet to be consumed (e.g., useful for a
batch of queries)

aSQLError -- returns information about the last
error (for the specified connection)

40

Friday’s (Jan 19)
Special Lecture

aMore on Connectivity
aBuilding a front-end using ASP
aRelevant for
`Programming Assignment
`Project

aNote time and place
`Sieg 134
`3.30-4.50pm

aPlease be there!

