Introduction to Database Systems

CSE 444

Lecture #1
Jan 3 2001

Staff

Instructor: Surajit Chaudhuri
Contact: surajitc@microsoft.com
Office hours: MW 4.50-5.20 (in Class)

TA: Yana Kadiysk
Sieg 226B, ykadiysk@cs.washington.edu
Office hours: Tu 9-10am, Fr 10-11am

NOTE: Your email to either of us must have CSE444 as the first word in the Subject line. Otherwise, it will be ignored

Textbook(s)

- A First Course in Database Systems
 by Jeff Ullman and Jennifer Widom
- Database Implementation
 by Hector Garcia-Molina, Jeff Ullman and Jennifer Widom
- Available in a shrink-wrapped package at the book store
 not available in that form for non-students

Other Reference Books

- Database Management Systems
 Ramakrishnan
- Fundamentals of Database Systems, Elmasri and Navathe
- Both are on hold in the library
Misc Administrative Issues

- Homework
 - See homepage for homework deadlines
 - No extension granted
- Course credit
 - Project 25%
 - Homework 15%
 - Programming Assignments 10%
 - Midterm 15%
 - Final 30%
- Prerequisites: CSE-326 or equivalent

Resolving Questions

- Follow the Sequence:
 1. Look at the CSE444 Hypermail archive
 2. If unresolved, determine whom you should contact
 - Project, Software, Homework Assignments: Yana
 - Concepts, Class Lectures: Surajit
 3. Try to come for the office hour of the right contact
 4. Send email to the right contact
 - NOTE: Your email to either of us must have CSE444 as the first word in the Subject line. Otherwise, it will be ignored

Wide World of Information

- Text Documents
 - Text, Word, Powerpoint Files, HTML pages
 - Indexed and searched by "Search Engines"
- Structured Information
 - Databases, Spreadsheets
 - Drives businesses
 - Focus of this course
- Future: Richer Integration

An Architecture for Structured Information Systems

- Web Browser as the user interface
- Web Server talks to an application-server
 - Supports business objects
- Application Server talks to a database server
 - Supports data objects
 - Focus of this course
Examples of Structured Information Systems

- Banking System
- Airline Reservation System
- Inventory Management
- Amazon.com, Dell.com, Etrade.com

Example: SCBook.com

- Data Structures
 - (Bookid, Publisherid, Title, ISBN, Price, topic)
 - (Bookid, Count)
 - (Publisherid, Pub_Price)
 - (Orderid, Publisherid, Bookid, Order_Count)
 - (Custid, Name, Address1, City)

- Applications
 - Report Sales by City and Topic
 - Order/receive more copies of a book
 - Buy a book

Some Characteristics

- Large Volumes of structured data
- Multi-user, Multi-application system
- Key Issues
 - Data structure
 - Application Development
 - Concurrency
 - Recovery
- DBMS: Software to simplify development of information systems

Why not use File System?

- Problems with virtual memory
 - Database sizes > 10T
 - Need advanced storage management
- Applications need to be smart to deal with large volumes of data
 - Good performance is crucial
 - Support high degree of parallelism
- Multiple applications
 - Different views to different applications
Why not use a File System?

- Data Integrity is key
 - Failure, Concurrency tolerant
 - Fine-Grained security
- Evolution in data structures
 - Need to rewrite applications

Key Observations

- Tabular data: simplest, widely used
- Tabular data in, tabular data out
 - Add/Remove/Update rows
 - Select subset of rows and columns
 - Combine information from multiple tables
 - Produce Reports
- Pick data structures carefully
- Serialize all user interactions
 - Success or Failure
 - Successful actions are permanent

Services from a DBMS

- High Level Programming on Relations
 - Query language: Set-Oriented Access
 - Data Definition Language - DDL
 - Data Manipulation Language - DML
 - Physical Data Independence
 - Data Integrity
- Transaction Management
 - Concurrency control
 - Recovery
- Storage Management
 - Indexes, Clustering

Questions the Course Addresses

- What are the services rendered by a DBMS?
 - High-Level Programming, Data Integrity
 - Transaction
 - Storage
- How do we use a commercial DBMS to implement an information system?
 - Design and Implementation
 - Web-based application
 - Hands-on experience (The Project)
- How is a DBMS built?
Building a Database for an Information System

- Model data from an information-centric viewpoint
 - Conceptual Database Design (ER Diagrams)
- Define Relational Schema
- Develop Application(s) using Query Languages
 - Views (virtual schema)
 - Stored Procedures
- Physical Database Design (indexes, clustering)

Abstraction: Logical Schema and Views

- Views describe how users see the data.
- Logical schema defines logical structure using relational data model
- Physical schema describes the files and indices used.

Example: University Database

- Logical Schema:
 - Students(sid: string, name: string, login: string, age: integer, gpa: real)
 - Courses(cid: string, cname: string, credits: integer)
 - Enrolled(sid: string, cid: string, grade: string)
- A possible Physical Schema:
 - Relations stored as unordered files.
 - Index on first column of Students.
- An External Schema (View):
 - Course_info(cid: string, enrollment: integer)
Schema Design and Implementation

- **Tables:**
 - **Students:**
 - SSN | Name | Category
 - 123-45-6789 | Charles | undergrad
 - 234-56-7890 | Dan | grad
 - **Takes:**
 - SSN | CID
 - 123-45-6789 | CSE444
 - 123-45-6789 | CSE444
 - 234-56-7890 | CSE142
 - **Courses:**
 - CID | Name | Quarter
 - CSE444 | Databases | Fall
 - CSE541 | Operating systems | Winter

- Separates the logical view from the physical view of the data
- Build appropriate indexes

Data Independence

- Applications insulated from how data is structured and stored.
- **Logical data independence**: Protects views from changes in logical (conceptual) structure of data.
- **Physical data independence**: Protects conceptual schema from changes in physical structure of data.

One of the most important benefits of using a DBMS!

Building Applications: Querying a Database

- Find all courses that "Mary" takes
- S(tructured) Q(uery) L(anguage)
  ```sql
  select C.name 
  from Students S, Takes T, Courses C 
  where S.name = "Mary" and 
  S.ssn = T.ssn and T.cid = C.cid
  ```

Inside a DBMS

- A typical DBMS has a layered architecture.
- The figure does not show the concurrency control and recovery components.
- This is one of several possible architectures; each system has its own variations.
Looking Ahead: Role of XML

- XML as the universal transport
 - Semi-structured and hierarchical
 - Efficient publishing of information in XML
 - Efficient storage of information in XML
 - "XML Stores" and/or "Native Stores"

Database Professionals

- Server Implementers
 - Application Developers
 - Database Administrators
 - Use knowledge of server and applications to tune databases
 - Physical design, security,..
 - End-Users of Applications

Database Industry

- Relational databases are a great success
- Servers
 - Oracle, IBM, Microsoft, Sybase, Informix, SQL, Compaq,..
- Client Tools for Database development
 - Many ISV-s
- Major Application vendors
 - SAP, Peoplesoft, ..

Course Outline

- High-Level Programming on Databases using SQL
 - Query Language (including views)
 - Web-based end-to-end application
- Database Design
 - Entity Relationship diagrams
 - Transforming E/R models to relational schemas
 - Normalization
Course Outline (2)

- Transactions
- Inside a DBMS
 - Storage and Indexes
 - Query Processing
 - Query Optimization
- Information Exchange on Internet: XML
- Special Topics

Course Project

- Goal: design a database application using ASP
- Choose topic on your own.
 - Some service projects available.
- Work in groups of 3-4 (start forming now)