Introduction to Database Systems

CSE 444

Lecture #1 Jan 3 2001

Staff

ℜTA: Yana Kadiysk Sieg 226B, ykadiysk@cs.washington.edu Office hours: Tu 9-10am, Fr 10-11am

XNOTE: Your email to either of us **must** have **CSE444** as the **first** word in the **Subject** line. Otherwise, it will be **ignored**

2

4

Textbook(s)

#A First Course in Database Systems ⊠by Jeff Ullman and Jennifer Widom

#Database Implementation⊠by Hector Garcia-Molina, Jeff Ullman and Jennifer Widom

3

Other Reference Books

*Database Management Systems *Ramakrishnan**Fundamentals of Database Systems, *Elmasri and Navathe**Both are on hold in the library

Misc Administrative Issues

≇Homework

☐See homepage for homework deadlines
⊡No extension granted

℃Course credit

- ⊡Project 25%
 ⊡Homework 15%
- △ Programming Assignments 10%
- Midterm 15%

⊡Final 30%

₩Prerequisites: CSE-326 or equivalent

Resolving Questions

Follow the Sequence:

5

- 1. Look at the CSE444 Hypermail archive
- 2. If unresolved, determine whom you should contact ☑ Project, Software, Homework Assignments: Yana ☑ Concepts, Class Lectures: Surajit
- 3. Try to come for the office hour of the <u>right</u> contact
- Send email to the <u>right</u> contact
 NOTE: Your email to either of us **must** have **CSE444** as the **first** word in the **Subject** line. Otherwise, it will be **ignored**

6

8

Wide World of Information

ℜText Documents

☑ Text, Word, Powerpoint Files, HTML pages
 ☑ Indexed and searched by "Search Engines"

#Structured Information

△Databases, Spreadsheets
 △Drives businesses
 △Focus of this course

#Future: Richer Integration

An Architecture for Structured Information Systems

- ₭ Web Browser as the user interface
- ₩ Web Server talks to an application-server
 ⊠ Supports business objects
- #Application Server talks to a database
 server
 - Supports data objects

 $\ensuremath{\boxdot}\xspace$ Focus of this course

Examples of Structured Information Systems

#Banking System#Airline Reservation System#Inventory Management#Amazon.com, Dell.com, Etrade.com

Example: SCBook.com

⊯Data Structures

(Bookid, Publisherid, Title, ISBN, Price, topic)
 (Bookid, Count)
 (Publisherid, Pub_Price)
 (Orderid, Publisherid, Bookid, Order_Count)
 (Custid, Name, Address1, City)

10

¥ Applications €

□ Report Sales by City and Topic
 □ Order/receive more copies of a book
 □ Buy a book

Some Characteristics

Large Volumes of <u>structured</u> data
Multi-user, Multi-application system
Key Issues

Data structure
Application Development
Concurrency
Recovery

DBMS: Software to simplify development of information systems

11

9

Why not use File System?

ℜ Problems with virtual memory
□ Database sizes > 10T
□ Need advanced storage management
ℜ Applications need to be smart to deal with large volumes of data
□ Good performance is crucial
□ Support high degree of parallelism
ℜ Multiple applications
□ Different views to different applications

Why not use a File System?

Concurrency tolerant
 ○ Failure, Concurrency tolerant
 ○ Fine-Grained security
 Colution in data structures
 ○ Need to rewrite applications

13

Key Observations

☐ Success or Failure

☐ Successful actions are permanent

14

Services from a DBMS

- 第 High Level Programming on Relations ☐Query language:Set-Oriented Access ☑Data Definition Language - DDL ☑Data Manipulation Language - DML ☐Physical Data Independence
- □Data Integrity
- # Transaction Management
 ⊡Concurrency control
 ⊡Recovery
- Storage Management
 ⊡Indexes, Clustering

15

Questions the Course Addresses

- What are the services rendered by a DBMS?
 High-Level Programming, Data Integrity
 Transaction
 Storage
 How do we use a commercial DBMS to
- implement an information system? Design and Implementation Dweb-based application DHands-on experience (The Project)

Building a Database for an Information System

- # Model data from an information-centric viewpoint ⊠Conceptual Database Design (ER Diagrams) # Define Relational <u>Schema</u> # Develop Application(s) using Query Languages
- % Physical Database Design (indexes, clustering)

SSN 123-45-6789 234-56-7890	Student	s:			Fakes:	
123-45-6789	Name	Category		SSN		CID
	Charles		1 123-45		-6789	CSE444
	Dan	grad	123-45-678			CSE444
				234-56		CSE142
CID	Course	es:	0.0	arter		
CSE444	Database	e.	fall			
CSE541			win	ter		
Separates view of th Build ap	s the lo ne data	gical vie	ew		the p	ohysical

Building Applications: Querying a Database

23

Inside a DBMS These layers must consider concurrency control and recovery Query Optimization layered architecture. and Execution ℜ The figure does not show **Relational Operators** the concurrency control and recovery Files and Access Methods components. Buffer Management possible architectures; Disk Space Management each system has its own variations. DB 24

Looking Ahead: Role of XML

₩XML as the universal transport
 Semi-structured and hierarchical
 Efficient publishing of information in XML
 Efficient storage of information in XML
 XML Stores" and/or "Native Stores"

25

Database Professionals

#Server Implementers

- ж Application Developers
- **#** End-Users of Applications

Database Industry

Servers
Oracle, IBM, Microsoft, Sybase, Informix, SQL, Compaq,...
Client Tools for Database development Many ISV-s
Major Application vendors
SAP, Peoplesoft, ...

27

Course Outline

 High-Level Programming on Databases using SQL
 □Query Language (including views)
 □Web-based end-to-end application

Course Outline (2)

29

Course Project

#Goal: design a database application using ASP
#Choose topic on your own.
□Some service projects available.
#Work in groups of 3-4 (start forming now)