CSE 442 - Data Visualization

Interaction

Jeffrey Heer University of Washington
[There is an] apparent challenge that computational artifacts pose to the longstanding distinction between the physical and the social, in the special sense of those things that one designs, builds, and uses, on the one hand, and those things with which one communicates, on the other.
"Interaction"- in a sense previously reserved for describing a uniquely interpersonal activity - seems appropriately to characterize what goes on between people and certain machines as well.

Lucy Suchman, Plans and Situated Actions

Interaction between people and

 machines requires mutual intelligibility or shared understanding.
Gulfs of Execution \& Evaluation

Gulfs

Conceptual model
Real world

Execution

Gulf of Execution

The difference between the user's intentions and the allowable actions.

Gulf of Execution

The difference between the user's intentions and the allowable actions.

Gulf of Evaluation

The amount of effort that the person must exert to interpret the state of the system and to determine how well the expectations and intentions have been met.

Gulf of Evaluation

Gulf

Conceptual model: x, y related?

Real world:

Evaluation

\mathbf{X}	\mathbf{Y}
0.67	0.79
0.32	0.63
0.39	0.72
0.27	0.85
0.71	0.43
0.63	0.09
0.03	0.03
0.20	0.54
0.51	0.38
0.11	0.33
0.46	0.46

Gulf of Evaluation

Gulf

Conceptual model: x, y related?

Real world:

Gulf of Evaluation

Gulf

Conceptual model:
Real world: x, y correlated?

Gulf of Execution

Gulf

Conceptual model:
Draw a scatterplot

Real world
Move 9030
Rotate 35
Pen down

Gulf of Execution

Gulf

Conceptual model:
Draw a scatterplot

Real world
vl.markCircle()
.encode(vl.x().fieldQ(...), vl.y().fieldQ(...))

Gulf of Execution

Gulf

Conceptual model:
Draw a scatterplot

Real world

Gulf of Execution

The difference between the user's intentions and the allowable actions.

Gulf of Evaluation

The amount of effort that the person must exert to interpret the state of the system and to determine how well the expectations and intentions have been met.

Interaction Techniques

Are there "essential" interactive operations for exploratory data visualization?

Taxonomy of Interactions

Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive


```
O Tableau - Book
```



```
# Quantity
# Sales
\oplus Latitude (generated)
\oplus(Longitude (generated)
=# Number of Records
# Measure Values
```

```
Office Supplies
\(\square\) Furniture
```

O- Tableau - Book1

```


```

Ratio

Quantity

Sales

\oplus Latitude (generated)
\oplus([) Longitude (generated)
=\# Number of Records

Measure Values

Office Supplies
Furniture

```

\section*{© Data Source}
```

Sheet 1
直 甶 胡

ili Columns	\pm Category	\equiv SUM(Sales)	SUM(Profit)
\# Rows	Region	Segment	

Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive

Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive
View Manipulation
Select, Navigate, Coordinate, Organize

Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive
View Manipulation
Select, Navigate, Coordinate, Organize

Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive
View Manipulation
Select, Navigate, Coordinate, Organize
Process and Provenance
Record, Annotate, Share, Guide

Hours of footage lost each month due to dropped frames

Hours of footage lost each month due to dropped frames

Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive
View Manipulation
Select, Navigate, Coordinate, Organize
Process and Provenance
Record, Annotate, Share, Guide

EXAMPLE: Bertin's Hotel Data

\checkmark	F	M	A	M	J	\checkmark	A	S	0	N	D		
26	21	26	28	20	20	20	20	20	40	15	40		\%CLIENTELE FEMALE
69	70	77	71	37	36	39	39	55	60	68	72		2 \% -" - LOCAL
7	6	3	6	23	14	19	14	9	6	8	8		$3 \%-1$ - U.S.A.
0	c	0	0	8	6	6	4	2	12	0	0	4	\% - - - SOUTH AMERIC
20	15	14	15	23	27	22	30	27	19	19	17		\% -"- EUROPE
1	0	0	8	6	4	6	4	2	1	0	1		6%-" - M.EAST, AFRICA
3	10	6	0	3	13	8	9	5	2	5	2		7% - 1 - ASIA
78	80	85	86	85	87	70	76	87	85	87	80	8	8 \% BUSINESSMEN
22	20	15	14	15	13	30	24	13	15	13	20	9	\% TOURISTS
70	70	75	74	69	68	74	75	68	68	64	75	10	\% DIRECT RESERVATIONS
20	18	19	17	27	27	19	19	26	27	21	15	11	1 \% AGENCY
10	12	6	9	4	5	7	6	6	5	15	10	12	2 \% AIR CREWS
2	2	4	2	2	1	1	2	2	4	2	5	13	3 \% CLIENTS UNDER 20 YEARS
25	27	37	35	25	25	27	28	24	30	24	30	14	\% - 11 - 20-35 - 11 -
48	49	42	48	54	55	53	51	55	46	55	43	15	\% - ! - 35-55-"1
25	22	17	15	19	19	19	19	19	20	19	22	16	\% - " - MORE THAN $55-11$
163	167	166	174	152	155	145	170	157	174	165	156	17	7 PRICE OF ROOMS
1.65	1.71	1.65	1.91	1.90	2.	1.54	1.60	1.73	1.82	1.66	144	18	8 LENGTH OF STAY
67	82	70	83	74	77	56	62	90	92	78	55	19	\% OCCUPANCY
			\times	\times	\times			\times	\times	\times	\times	120	- CONVENTIONS

[Graphics and Graphic Information Processing, Bertin 81]

UFM $\overline{A M J} J A S \overline{O N D}$ JFMAMJ JASOND (1)

[Graphics and Graphic Information Processing, Bertin 81]

JFM $\overline{A M J}$ JAS $\overline{O N D} J$ FMAMJ JAS $\overline{O N D}$ -

JFMAMJ JAS OND J FMAMJ JASOND

[Graphics and Graphic Information Processing, Bertin 81]

[Graphics and Graphic Information Processing, Bertin 81]

[Graphics and Graphic Information Processing, Bertin 81]

EXAMPLE: Tukey et al.'s PRIM-9

PRIM-9, Tukey, Fisherkeller, Friedman 1972
L. \prod_{i}^{i}
L.

$$
1
$$

Selection

Basic Selection Methods

Point Selection

Mouse Hover / Click

Touch / Tap

Select Nearby Element (e.g., Bubble Cursor)

Basic Selection Methods

Point Selection
Mouse Hover / Click
Touch / Tap
Select Nearby Element (e.g., Bubble Cursor)
Region Selection
Rubber-band (rectangular) or Lasso (freehand)
Area cursors ("brushes")

Brushing \& Linking

Brushing

Direct attention to a subset of data [Wills 95]

Brushing \& Linking

Select ("brush") a subset of data See selected data in other views

The components must be linked by tuple (matching data points), or by query (matching range or values)

Brushing Scatterplots, Becker \& Cleveland 1982

Brushing Scatterplots

Cross-Filtering

Baseball Statistics [Wills 95]

Baseball Statistics [Wills 95]

avg assists vs avg putouts (fielding ability)

avg career HRs vs avg career hits (batting ability)

Baseball Statistics [Wills 95]

Linking Assists to Positions

Dynamic Queries

Query \& Results

SELECT house FROM seattle_homes

WHERE price < 1,000,000 AND bedrooms > 2 ORDER BY price

Dunamic Browser : DC Home Finder

IaN	Duelling	Address	city
2	House	$5256 \mathrm{~s} . \mathrm{Canitol} \mathrm{st}$	Beltsuille, MD
4	House	5536 S. Lincoln St.	Beltsville, MD
5	House	5165 Jones \$treet	Beltsuille, MD
8	House	5007 Jones Street	Beltsuille, MD
9	House	4872 Jones street	Beltsuille, MD
17	House	5408 s. Capitol st.	Beltsuille. MD
20	House	5496 S. Canitol st.	Beltsuille, MD
85	Condo	5459 \$. Lincoln \$t.	Laurel, MD
86	Condo	5051 S. Lincoln St.	Laurel, MD
88	Condo	5159 Hamilton Street	Laure1, MD
92	Condo	5132 Hamilton Street	Laure1, MD
93	Condo	5221 S. Lincoln st.	Laure 1, MD
94	Concto	5043 s. Lincoln st.	Laure1, MD
95	Condo	4970 Jones Street	Laurel, MD
97	Condo	4677 Jones \$treet	Laurel, MD
98	Concto	4896 S . Capitol St.	Laure1, MD
99	Condo	5048 s . Capitol st.	Laurel, MD
100	Condo	4597 3ist street	Laure 1, MD
101	Concto	5306 s. Lincoln st.	Leure1, MD
103	Condo	5562 Glass Poad	Laurel, MD
105	Condo	S546 Hamilton Street	Laurel, MD
152	House	7670 31st Street	Upper Marlboro, MD

Issues with Textual Queries

1. For programmers
2. Rigid syntax
3. Only shows exact matches
4. Too few or too many hits
5. No hint on how to reformulate the query
6. Slow question-answer loop
7. Results returned as table

HomeFinder

[Williamson and Shneiderman 92]

Direct Manipulation

1. Visual representation of objects and actions 2. Rapid, incremental and reversible actions 3. Selection by pointing (not typing)
2. Immediate and continuous display of results
Popularity

Title
ALL
ALL

Actor: ALL
ALL

Actress:ALL
ALL

Director: ALL

AB C D FGHJKLM PRS TWZ

Films Shown: 1455

ALL
Drama
Mystery
Mystery Comedy Music Action War Sci-Fi Western

Popularity

Highlander
Red Tent, The
Longest Day, The
Red Tent,
Untouchables, The
Great Train Robbery, The Outland From Russia with Love

$$
\begin{aligned}
& \text { Man Who Would Be King, The } \\
& \text { Robin \& Marian } \\
& \text { Zardoz Cuba }
\end{aligned}
$$

Offence, The
 Family Business Time Bandits
Meteor

\qquad

Alphaslider (?)

Title : Moonstruck

ABCDFGHLM NPRST WZ

[Ahlberg and Shneiderman 94]

Popularity

[Ahlberg and Shneiderman 94]

- The Altortbute Explorer

Zipdecode [Fry 04]

http://benfry.com/zipdecode/

NameVoyager [Wattenberg 06]

http://www.babynamewizard.com/voyager

DimpVis [Kondo 14]

Parallel Coordinates [Inselberg]

TimeSearcher [Hocheiser 02]

13/224 records displayed
6\%

Builds on Wattenberg's [2001] idea for sketch-based queries of time-series data.

3D Dynamic Queries [Akers 04]

3D Dynamic Queries [Akers 04]

Pros \& Cons

Pros

Controls useful for both novices and experts
Quick way to explore data

Pros \& Cons

Pros

Controls useful for both novices and experts
Quick way to explore data
Cons
Simple queries
Lots of controls
Amount of data shown limited by screen space
Who would use these kinds of tools?

Prompting Reflection

You Draw It [Aisch et al. '15]

Draw your line on the chart below

Percent of children who attended college

Summary

Most visualizations are interactive
Even passive media elicit interactions
Good visualizations are task dependent
Pick the right interaction technique
Consider the semantics of the data domain
Fundamental interaction techniques
Selection / Annotation, Sorting, Navigation, Brushing \& Linking, Dynamic Queries

Administrivia

A2: Deceptive Visualization

Design two static visualizations for a dataset:

1. An earnest visualization that faithfully conveys the data
2. A deceptive visualization that tries to mislead viewers

Your two visualizations may address different questions.
Try to design a deceptive visualization that appears to be earnest: can you trick your classmates and course staff?
You are free to choose your own dataset, but we have also provided some preselected datasets for you.
Submit two images and a brief write-up on Canvas.
Due by Wed 1/26 11:59pm.

A2 Peer Reviews

On Thursday 10/21 you will be assigned two peer A2 submissions to review. For each:

- Try to determine which is earnest and which is deceptive
- Share a rationale for how you made this determination
- Share feedback using the "I Like / I Wish / What If" rubric

Assigned reviews will be posted on the A2 Peer Review page on Canvas, along with a link to a Google Form. You should submit two forms: one for each A2 peer review.

Due by Mon 1/31 11:59pm.

I Like... / I Wish... / What If?

I LIKE...

Praise for design ideas and/or well-executed implementation details. Example: "I like the navigation through time via the slider; the patterns observed as one moves forward are compelling!"

I WISH...

Constructive statements on how the design might be improved or further refined. Example: "I wish moving the slider caused the visualization to update immediately, rather than the current lag."

WHAT IF?

Suggest alternative design directions, or even wacky half-baked ideas. Example: "What if we got rid of the slider and enabled direct manipulation navigation by dragging data points directly?"

An Interaction Grammar (Vega-Lite Selections)

Satyanarayan, Moritz, Wongsuphasawat, Heer. TVCG'17

Slope Graph

Line Chart

Binned Scatter Plot

Strip Plot

Area Chart

Vega-Lite: A Grammar of Graphics

Scatter Plot Matrix

Faceted Views

Vega-Lite: A Grammar of Multi-View Graphics

Indexed Chart

Focus + Context

Cross-Filtering

Vega-Lite: A Grammar of Interactive Graphics

Cross-Filtering in Vega-Lite

Cross-Filtering in Vega-Lite

Cross-Filtering in Vega-Lite

markBar().encode(
$x() . f i e l d Q(' d e l a y ') . b i n(t r u e)$,
$y()$. count ()
).data('data/flights.json')

day (binned)

Cross-Filtering in Vega-Lite

markBar().encode(
$x() . f i e l d Q(' d e l a y ') . b i n(t r u e)$,
$y()$. count(),
color().value('lightgrey')
).data('data/flights.json')

Cross-Filtering in Vega-Lite

```
markBar().encode(
    x().fieldQ(repeat('row').bin(true),
    y().count(),
    color().value('lightgrey')
)
.repeat({
    row: ['delay', 'distance', 'hour']
    })
    .data('data/flights.json')
```


Cross-Filtering in Vega-Lite

```
layer(
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count(),
        color().value('lightgrey')
    ),
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count()
    )
)
.repeat({
    row: ['delay', 'distance', 'hour']
})
.data('data/flights.json')
```


Cross-Filtering in Vega-Lite

```
brush = selectInterval().encodings('x')
layer(
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count(),
        color().value('lightgrey')
    ).params(brush),
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count()
    )
)
.repeat({
```



```
    row: ['delay', 'distance', 'hour']
})
.data('data/flights.json')
```


Cross-Filtering in Vega-Lite

```
brush = selectInterval.encodings('x')
layer(
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count(),
        color().value('lightgrey')
    ).params(brush),
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count()
    ).transform(filter(brush))
)
.repeat({
```



```
    row: ['delay', 'distance', 'hour']
})
.data('data/flights.json')
```


Cross-Filtering in Vega-Lite

```
brush = selectInterval.encodings('x')
layer(
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count(),
        color().value('lightgrey')
    ).params(brush),
    markBar().encode(
        x().fieldQ(repeat('row')).bin(true),
        y().count()
    ).transform(filter(brush))
)
.repeat({
    row: ['delay', 'distance', 'hour']
})
.data('data/flights.json')
```


delay (binned)

Multi-view interactive graphics in ~ 10 lines of code

What constitutes a selection?

Input handlers: click, shift-click, drag, zoom, ... Bindings

- Inputs: interactive brush, query widgets
- Axis scales: pan / zoom a scale domain
- Legends: interactive selection

Scale inversion: visual space \rightarrow data space Predicate: test if a data record is selected

A selection can then parameterize data transformations and visual encodings.

Selections

Selections invert scales and parameterize graphics

Bind selection to scale domains: Synchronized Pan \& Zoom!

Overview + Detail

Parameterized Transformations

