CSE 442 - Data Visualization **Color**

Matthew Conlen University of Washington

Color in Visualization

Identify, Group, Layer, Highlight

Colin Ware

Purpose of Color

To label To measure To represent and imitate To enliven and decorate

"Above all, do no harm." - Edward Tufte

Topics

Perception of Color

Light, Visual system, Mental models

Color in Information Visualization Categorical & Quantitative encoding Guidelines for color palette design

Perception of Color

Perception of Color

Physicist's View

Light as electromagnetic wave

Wavelength Energy or "Relative luminance"

A Field Guide to Digital Color, M. Stone

Emissive vs. Reflective Light

Additive (digital displays)

Subtractive (print, e-paper)

Perception of Color

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelength

A Field Guide to Digital Color, M. Stone

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelength Integration with input stimulus

A Field Guide to Digital Color, M. Stone

Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").

"Tri-stimulus"

Computer displays Digital scanners Digital cameras

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response.

"Standard observer" response curves

Colorfulness vs. Brightness

x = X / (X+Y+Z)y = Y / (X+Y+Z)

Spectrum locus

Purple line

Spectrum locus

Purple line

Spectrum locus

Purple line

Spectrum locus

Purple line

Display Gamuts

Typically defined by: 3 Colorants Convex region

Display Gamuts

Deviations from sRGB specification

Color Blindness

Missing one or more cones or rods in retina.

Normal Retina

Protanopia

Color Blindness Simulators

Simulate color vision deficiencies Browser plug-ins (NoCoffee, SEE, ...) Photoshop plug-ins, etc...

Deuteranope

Protanope

Tritanope

Perception of Color

Primary Colors

To paint "all colors": Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

> Yellow Blue Green Red

Opponent Processing

LMS are combined to create: Lightness Red-green contrast Yellow-blue contrast

Opponent Processing

LMS are combined to create: Lightness Red-green contrast Yellow-blue contrast

Opponent Processing

LMS are combined to create: Lightness Red-green contrast Yellow-blue contrast

Experiments:

No reddish-green, no blueish-yellow Color after images

CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory. Non-linear transformation of CIE XYZ

CIE LAB Color Space

Axes correspond to opponent signals

- L* = Luminance
- **a*** = Red-green contrast
- **b*** = Yellow-blue contrast

Much more perceptually uniform than sRGB!

Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

D3 includes LAB color space support!

Perception of Color

Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).

Munsell Color System

Perceptually-based Precisely reference a color Intuitive dimensions Look-up table (LUT)

Munsell Color System

Color palette

Perceptually-Uniform Color Space

Munsell colors in CIE LAB coordinates

Mark Fairchild

Perception of Color

Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?

"In order to use color effectively it is necessary to recognize that it deceives continually." - Josef Albers, Interaction of Color

Simultaneous Contrast

Josef Albers

Simultaneous Contrast

Josef Albers

Simultaneous Contrast

Inner & outer rings are the same physical purple.

Donald MacLeod

Chromatic Adaptation

Chromatic Adaptation

Bezold Effect

Color appearance depends on adjacent colors

Color Appearance Tutorial by Maureen Stone

Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild

Spreading

Spatial frequency

The paint chip problem Small text, lines, glyphs Image colors

Adjacent colors blend

Foundations of Vision, Brian Wandell

Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?

Chromatic adaptation Luminance adaptation Simultaneous contrast Spatial effects Viewing angle

iCAM

iCAM models: Chromatic adaptation Appearance scales Color difference Crispening Spreading HDR tone mapping

(see also CIECAM02)

Mark Fairchild

Perception of Color

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969 Surveyed speakers from 20 languages Literature from 69 languages

World Color Survey

World Color Survey

World Color Survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

Results from WCS

Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524

Results from WCS

Language #24 (Chavacano) Mutual info = 0.939 / Contribution = 0.513

Universal (?) Basic Color Terms

Basic color terms recur across languages.

Evolution of Basic Color Terms

Proposed universal evolution across languages.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Naming Effects Color Perception

Color name boundaries

Icicle Tree with Rainbow Coloring

Color Naming Models [Heer & Stone '12]

Model 3 million responses from XKCD survey

Bins in LAB space sized by *saliency*: How much do people agree on color name? Modeled by entropy of *p(name | color)*

Perception of Color

Administrivia

A3 Peer Review

Available on Canvas

I like - Identify some things that you like about the project.
I wish - Identify alternative designs or interactions that you wish the authors had explored.

What if? - Think about any outside the box alternatives that the authors may not have considered

Final Project is Posted!

Details on course website.

Interactive Dashboard. Create an interactive dashboard appropriate for an interested general audience. The dashboard might allow users to interactively explore a dataset, or serve as a display that updates over time as new data becomes available.

Explorable Explanation. Create an interactive article that explains a technical subject to the reader. The topic could be a computer science algorithm, a mathematical proof, a scientific phenomenon, or some other topic that you're passionate about.

Final Project Milestones!

Proposal. Submit a Google Form with your team members and your idea. You can keep groups the same or switch.

Initial Prototype. Complete an initial prototype before the feedback sessions so we can offer constructive help.

Design feedback sessions. Meet with course staff to check in and get feedback and advice on your designs.

Final Deliverables and showcase. Demo videos will be shown in class. Must also have GitHub URL.

Designing Colormaps

Categorical Color

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

Allocation of the Radio Spectrum

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

UNITED

http://www.ntia.doc.gov/osmhome/allochrt.html

Alloca UNITED **STATES** FREQUENCY **ALLOCATION** THE RADIO SPECTR

-	IOWALTICAL		-					
	6LE							
	ENAUTICAL BLE SATELLITE		UNDWORLE		RADICDETERMINE SKTELLITE			
	IOMUTICAL DIOMANDATION		LND WORLE SVITUTE		RADIOLOCATION			
-	CLR		WATHE NORE		RADIOCATORS			
-	KTELIK SKITELUTE		WATHE NORE Stellte		RACIOWAGATON			
•	NOCASTING		NATINE NOOMAGATON		RACIONWASATON			
	NOCASTING ILLUTE		NETROROLOGICAL ADS		SPACE OPERATION			
	IN DURUDANICAN ILLUTE		NETEOROLOGICAL SATELLITE		SPACE RESEARCH			
	•		K012		STANDARD FREED			
	ED SKTELLTE		NONE SVIELUTE		STANDARD (RED.) AND THE SIGNAL			
ACTIVIT	Y CODE							
	VOINMENT EXCLUS	ME	G00000	INTINOI-GO	COMPANY SHARED			
NON-GONOMENT EXCLUSIVE								
ALLOCATION USAGE DESIGNATION								
SERVICE	DAIPLE	DESC	RETOR					
Primary	REED	Capit	a lutan					

rum

ACTIVITY CODE

Palette Design & Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance Salience									Name		
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	.37	brown 54.0%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	.58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	.67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	.18	yellow 31.2%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	.25	blue 25.4%
Tableau-10					Α	verage	0.97	.52			

http://vis.stanford.edu/color-names

Palette Design & Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance Salience										Name	
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	.30	blue 50.5%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	.21	red 27.8%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	.34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	.55	purple 67.3%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	.20	blue 36.6%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	.39	orange 51.9%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	.13	blue 15.7%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	.16	pink 29.4%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	.12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	.30	purple 23.9%
Excel-10							Α	verage	0.87	.27	

http://vis.stanford.edu/color-names

Quantitative Color

Rainbow Color Maps

Be Wary of Rainbows!

- 1. Hues are not naturally ordered
- 2. People segment colors into classes, perceptual banding
- 3. Naive rainbows are unfriendly to color blind viewers
- 4. Some colors are less effective at high spatial frequencies

Color Brewer: Palettes for Maps

Classing Quantitative Data

Age-adjusted mortality rates for the United States. Common option: break into 5 or 7 quantiles.

Classing Quantitative Data

- 1. Equal interval (arithmetic progression)
- 2. Quantiles (*recommended*)
- 3. Standard deviations
- Clustering (Jenks' natural breaks / 1D K-Means) Minimize within group variance Maximize between group variance

Quantitative Color Encoding

Sequential color scale

Ramp in luminance, possibly also hue Typically higher values map to darker colors

Quantitative Color Encoding

Sequential color scale

Ramp in luminance, possibly also hue Typically higher values map to darker colors

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Quantitative Color Encoding

Sequential color scale

Ramp in luminance, possibly also hue Typically higher values map to darker colors

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Sequential Scales: Single-Hue

Ramp primarily in luminance, subtle hue difference

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Sequential Scales: Multi-Hue

Ramp luminance & hue in perceptual color space Avoid contrasts subject to color blindness!

Sequential Scales: Multi-Hue

Viridis, https://bids.github.io/colormap/

Diverging Color Scheme

Designing Diverging Scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Designing Diverging Scales

Hue Transition

Carefully Handle Midpoint Choose classes of values Low, Average, High - Average should be gray **Critical Breakpoint** Defining value e.g., 0 Positive & negative should use different hues

Extremes saturated, middle desaturated

Hints for the Colorist

Use **only a few** colors (~6 ideal) Colors should be **distinctive** and **named** Strive for color harmony (natural colors?) Use cultural conventions; appreciate symbolism Get it right in **black and white** Respect the **color blind** Take advantage of **perceptual color spaces**