cse 442 - Data Visualization The Value of Visualization

Jeffrey Heer, Jane Hoffswell Univ. of Washington

How much data (bytes) did we produce in 2010?

2010: 1,200 exabytes

Gantz et al., 2008, 2010

2010: 1,200 exabytes and exponential growth...

Gantz et al., 2008, 2010

Physical Sensors Image courtesy cabspotting.org

C

The ability to take data-to be able to **understand** it, to **process** it, to **extract value** from it, to **visualize** it, to **communicate** it-that's going to be

a hugely important skill in the next decades, ... because now we really do have **essentially free and ubiquitous data**. So the complimentary scarce factor is the ability to understand that data and extract value from it.

The ability to take data-to be able to **understand** it, to process it, to extract value from it, to visualize it, to communicate it-that's going to be a hugely important skill in the next decades, ... because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value from it.

The ability to take data-to be able to **understand** it, to process it, to extract value from it, to visualize it, to communicate it-that's going to be a hugely important skill in the net free "to whom? because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value from it.

The ability to take data-to be able to **understand** it, to process it, to extract value from it, to visualize it, to communicate it-that's going to be a hugely important skill in the net free "to whom? because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor "ubiquitous" about whom? hat data and extract value from it.

The ability to take data-to be able to **understand** it, to process it, to extract value from it, to visualize it, to communicate it-that's going to be a hugely important skill in the net free "to whom? because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor "ubiquitous" about whom? hat data and extract value from it. ...to whose benefit?

Life-size cutouts of Facebook CEO Mark Zuckerberg are displayed by a progressive advocacy group on the lawn of the U.S. Capitol on Tuesday

_

ÞΧ

My Facebook Was Breached by Cambridge Analytica. Was Yours?

How to find out if you are one of the 87 million victims

ROBINSON MEYER | APR 10, 2018

TEXT SIZE

- +

My Facebook Was Breached by Cambridge Analytica. Was Yours?

How to find out if you are one of the 87 million victims

ROBINSON MEYER | APR 10, 2018 | TECHN

8 | TECHNOLOGY

Psychology's Replication Crisis Can't Be Wished Away

It has a real and heartbreaking cost.

...

ED YONG | MAR 4, 2016 | SCIENCE

😏 Tweet

f Share

TEXT SIZE

- +

My Facebook Was Breached by Cambridge Analytica. Was Yours?

How to find out if you are one of the 87 million victims

ROBINSON MEYER | APR 10, 2018 | TECHNOLOGY

...

🔰 Tweet

f Share

CHICAGO MAY6-11 LEARN Machine Learning & Advanced Analytics

f Share

💟 Tweet

...

TEXT SIZE

High potential for data abuse...

Rise of the racist robots - how AI is learning all our worst impulses

There is a saying in computer science: garbage in, garbage out. When we feed machines data that reflects our prejudices, they mimic them – from antisemitic chatbots to racially biased software. Does a horrifying future await people forced to live at the mercy of algorithms?

...amplified by "big data" and ML systems.

Inequality

Rise of the racist robots - how AI is learning all our worst impulses

There is a saying in computer science: garbage in, garbage out. When we feed machines data that reflects our prejudices, they mimic them - from antisemitic chatbots to racially biased software. Does a horrifying future await people forced to live at the mercy of algorithms?

...amplified by "big data" and ML systems.

Inequality

Rise of the racist robots - how AI is learning all our worst impulses

There is a saying in computer science: garbage in, garbage out. When we feed machines data that reflects our prejudices, they mimic them - from antisemitic chatbots to racially biased software. Does a horrifying future await people forced to live at the mercy of algorithms?

...amplified by "big data" and ML systems.

How might we use **visualization** to **empower understanding** of data and analysis processes?

"Transformation of the symbolic into the geometric" [McCormick et al. 1987]

"Transformation of the symbolic into the geometric" [McCormick et al. 1987]

"... finding the artificial memory that best supports our natural means of perception." [Bertin 1967]

"Transformation of the symbolic into the geometric" [McCormick et al. 1987]

"... finding the artificial memory that best supports our natural means of perception." [Bertin 1967]

"The use of computer-generated, interactive, visual representations of data to amplify cognition." [Card, Mackinlay, & Shneiderman 1999]

Set A		Se	Set B		Set C		Set D	
Х	Y	Х	Y	Х	Y	Х	Y	
10	8.04	10	9.14	10	7.46	8	6.58	
8	6.95	8	8.14	8	6.77	8	5.76	
13	7.58	13	8.74	13	12.74	8	7.71	
9	8.81	9	8.77	9	7.11	8	8.84	
11	8.33	11	9.26	11	7.81	8	8.47	
14	9.96	14	8.1	14	8.84	8	7.04	
6	7.24	6	6.13	6	6.08	8	5.25	
4	4.26	4	3.1	4	5.39	19	12.5	
12	10.84	12	9.11	12	8.15	8	5.56	
7	4.82	7	7.26	7	6.42	8	7.91	
5	5.68	5	4.74	5	5.73	8	6.89	

Set A		Se	Set B		Set C		Set D	
Х	Y	Х	Y	Х	Y	Х	Y	
10	8.04	10	9.14	10	7.46	8	6.58	
8	6.95	8	8.14	8	6.77	8	5.76	
13	7.58	13	8.74	13	12.74	8	7.71	
9	8.81	9	8.77	9	7.11	8	8.84	
11	8.33	11	9.26	11	7.81	8	8.47	
14	9.96	14	8.1	14	8.84	8	7.04	
6	7.24	6	6.13	6	6.08	8	5.25	
4	4.26	4	3.1	4	5.39	19	12.5	
12	10.84	12	9.11	12	8.15	8	5.56	
7	4.82	7	7.26	7	6.42	8	7.91	
5	5.68	5	4.74	5	5.73	8	6.89	

Summai	ry Statistics
$u_{X} = 9.0$	$\sigma_{\chi} = 3.317$
$u_{y} = 7.5$	$\sigma_{\rm Y} = 2.03$

Linear Regression Y = 3 + 0.5 X $R^2 = 0.67$

[Anscombe 1973]

Set A

Set B

Set C

Set D

Set A

Set B

Set C

Set D

[Anscombe 1973]

"Abortion"

from Wikipedia

authors

Zundark

The Cunctator

Stephen Gilbert Shubenstein

Mmcconn.

Donte Alighieri

Comember

MyRedDice

Kingturtie

COLOR Ne group 📜 individual 🔛 text changes 💥 text age SPACING O date O versions

198.37.26.168 posts Conversion script 1 KamikazeArchon Wikipedia History Flow [Viegas & Wattenberg]

Abortion

(Revision as of 22:56 4 Jun 2003)

"Abortion," in its most commonly used se refers to the deliberate early termination pregnancy, resulting in the death of the gr fetus, [1] Medically, the term also refers t early termination of a pregnancy by natur ("spontaneous abortion" or miscarriage, w 1 in 5 of all pregnancies, usually within the weeks) or to the cessation of normal grow body part or organ. What follows is a disc the issues related to deliberate or "induceabortion.

Methods

Depending on the stage of pregnancy an a performed by a number of different metho the earliest terminations (before nine wee a chemical abortion is the usual method, t mifepristone is usually the only legal meth although research has uncovered similar e from methotrexate and misoprostol. Conc with chemical abortion and extending up u around the fifteenth week suction-aspiration vacuum abortion is the most common app replacing the more risky dilation and cure C). From the fifteenth week up until aroun eighteenth week a surgical dilation and ex-(D & E) is used.

As the fetus size increases other technique be used to secure abortion in the third trip premature expulsion of the fetus can be in with prostaglandin, this can be coupled wit injecting the amniotic fluid with saline or u solution. Very late abortions can be broug by the controversal intact dilation and exte & X) or a hysterotomy abortion, similar to caesarian section.

The controversy

The morality and legality of abortion is a l important topic in applied ethics and is als discussed by legal scholars and religious p Important facts about abortion are also re by sociologists and historians

Abortion has been common in most societ although it has often been opposed by sor institutionalized religions and governments century politics in the United States and Er abortion became commonly accepted by the 20th century. Additionally, abortion is accepted in China, India and other populo countries. The Catholic Church remains o the procedure, however, and in other cour notably the <u>United States</u> and the (predom Catholic) Republic of Ireland, the controve extremely active, to the extent that even t of the respective positions are subject to I debate. While those on both sides of the are generally peaceful, if heated, in their i of their positions, the debate is sometimes characterized by violence. Though true of sides, this is more marked on the side of t opposed to abortion, because of what they the gravity and urgency of their views.

The central question

The central question in the abortion debat clash of presumed or perceived rights. On hand, is a fetus (sometimes called the "un pro-life/anti-abortion advocates) a human with a right to life, and if so, at what point pregnancy does the fetus become human? other hand, is a fetus part of a woman's b

2003

2001

Wikipedia History Flow [Viegas & Wattenberg]

Why Create Visualizations?

Why Create Visualizations?

Answer questions (or discover them) Make decisions See data in context Expand memory Support graphical calculation Find patterns Present argument or tell a story Inspire

Record Information

Gallop, Bay Horse "Daisy" [Muybridge]

1.

Marey's sphygmograph in use. 1860. La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine.

E.J. Marey's sphygmograph [from Braun 83]

Percent of children who attended college

You Draw It: How Family Income Predicts Children's College Chances [New York Times, May 28, 2015]

You Draw It: How Family Income Predicts Children's College Chances [New York Times, May 28, 2015] Support Reasoning

HISTORY OF O-RING DAMAGE ON SRM FIELD JOINTS

-		Cr	ross Sectional	View	То		
and the	SRM No.	Erosion Depth (in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Clocking Location (deg)
61A LH Center Field** 61A LH CENTER FIELD** 51C LH Forward Field** 51C RH Center Field (prim)*** 51C RH Center Field (sec)***	22A 222A 15A 15B 15B	None NONE 0.010 0.038 None	None NONE 154.0 130.0 45.0	0.280 0.280 0.280 0.280 0.280 0.280	None NONE 4.25 12.50 None	None NONE 5.25 58.75 29.50	36°66° 338°-18° 163 354 354
41D RH Forward Field 41C LH Aft Field* 418 LH Forward Field	13B 11A 10A	0.028 None 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275
STS-2 RH Aft Field	2B	0.053	116.0	0.280			90

*Hot gas path detected in putty. Indication of heat on O-ring, but no damage. **Soot behind primary O-ring. ***Soot behind primary O-ring, heat affected secondary O-ring.

Clocking location of leak check port - 0 deg.

د

OTHER SRM-15 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY AND NO SOOT NEAR OR BEYOND THE PRIMARY O-RING.

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

BLOW BY HISTORY SRM-15 WORST BLOW-BY		HISTORY	OF (DEGR	O-RING T	TEMPERATURES
· 2 CASE JOINTS (80°), (110°) ARC	MOTOR	_met	AMB	O-RING	WIND
O MUCH WORSE VISUALLY THAN SRM-22	Dm-+	68	36	47	IO MPH
	Dm - 2	76	45	52	10 mp4
SRM 22 BLOW-BY	QM - 3	72.5	40	48	10 m PH
· 2 CASE JOINTS (30-40")	Qm - 4	76	48	51	10 mPH
	SRM-15	52	64	53	10 mpt
SRM-13 R, 15, 16A, 18, 23A 24A	5RM-22	77	78	75	10 mpH
O NOZZLE BLOW-BY	SRM-25	55	26	29 27	IO MPH 25 MPH

2 of 13 pages of material faxed to NASA by Morton Thiokol [from Tufte 1997]

Make Decisions: Challenger

Make Decisions: Challenger

Chart of temperatures vs. O-ring damage [Tufte 97]

Make Decisions: Challenger

But wait! What is an appropriate "damage index"? Which temperatures, O-ring or outside air?

Chart of temperatures vs. O-ring damage [Tufte 97]

Data in Context: Cholera Outbreak

In 1854 John Snow plotted the position of each cholera case on a map. [from Tufte 83]

Data in Context: Cholera Outbreak

Used map to hypothesize that pump on Broad St. was the cause. [from Tufte 83]

Find Patterns: NYC Weather

NEW YORK CITY'S WEATHER FOR 1980

[New York Times 1981]

Answer Questions: Brain Power?

M	licros	oft Excel - ani	mal.xls						_	
:2	Ele	Edit View	Insert	Format	Tools	<u>D</u> ata	Window	Help	-	đΧ
	A1	-	f*	ID						
	Α		В			С		D	E	1
1	ID .	Name			Body	Weight	Brain	Weight		-
2	1	Lesser Short	t-tailed 3	Shrew		5	5	0.14		
3	2	Little Brown	Bat			10)	0.25		
4	3	Mouse				23	3	0.3		
5	4	Big Brown B	at			23	3	0.4		
6	- 5	Musk Shrew	1			48	3	0.33		
7	6	Star Nosed N	Mole			60)	1		
8	7	Eastern Ame	erican N	1ole 🛛		75	5	1.2		
9	8	Ground Squi	rrel			101	1	4		
10	9	Tree Shrew				104	1	2.5		
11	10	Golden Ham	ster			120)	1		_
12	11	Mole Rate				122	2	3		
13	12	Galago				200)	5		
14	13	Rat				280)	1.9		
15	14	Chinchilla				425	j –	6.4		
16	15	Desert Hedg	ehog			550)	2.4		
17	16	Rock Hyrax	(a)			750)	12.3		
18	17	European He	edgehog	1		785	i	3.5		
19	18	Tenrec				900)	2.6		
20	19	Arctic Groun	id Squir	rel		920)	5.7		
21	20	African Gian	t Pouch	ed Rat		1000)	6.6		
22	21	Guinea Pig				1040)	5.5		
23	22	Mountain Be	aver			1350)	8.1		
24	23	Slow Loris				1400)	12.5		
25	24	Genet				1410)	17.5		
26	25	Phalanger				1620)	11.4		-
H 4	F F	animal /				•				
Read	ły									1.

		I I		-				i
Modern Man								
Dolphin								
Homo habilis								
Gracile Australopithecus								
Chimpanzee								
Baboon								
Crow								
Vampire Bat								
Wolf								
Gorilla								
Elephant								
Hummingbird								
Lion						•		
Rat								
Mole								
Opossum								
Blue Whale								
Saurornithoid								
Goldfish								
Ostrich								
Alligator								
Tyrannosaurus rex								
Coelacanth								
Eel								
Stegosaurus								
Brachiosaurus								
Diplodocus								
0.0.0	4	1	1	1	1			Т
	0.0312	- 3		-2		-1		0
ne Elements of Graphi	ng Data			aber 14		a tailen		
		00	Drain I	Noight	2/0100	Badu	Noight	
leveland	L	Ug 10	Dialiti	weight -	- 73 LOg	10 Body	weight	

Convey Information

The Arises of the Bac, red, & black wedges are each measured from the centre as the common vertex.

The blue medges measured from the centre of the circle represent area for area the deaths from Propentific or Meligable Zymetic descases, the red melges measured from the centre the deaths from meaning & the Mack wedges measured from the centre the deaths from all other causes. The black line across the red triangle in Nec" 1554 marks the boundary of the deaths from all other causes during the merith.

In Peteber 1854, & April 1855, the black area summides with the red, in January & Pebruary 1855 the blue extender with the black. The entire areas may be compared by following the blue, the red & the black time inclusing than.

BLAGRAM or THE CAUSES OF MORTALITY

IN THE ARMY IN THE EAST.

APRIL 1854 TO MARCH 1855.

Mercent front Mathematics

1856 "Coxcomb" of Crimean War Deaths, Florence Nightingale

1856 "Coxcomb" of Crimean War Deaths, Florence Nightingale

Communicate, Inform, Inspire

Visualizing Black America, Du Bois et al. 1900

Bones in hand, Gray's Anatomy 1918 ed.

New deaths attributed to Covid-19 in European Union, United States, Brazil and United Kingdom

Seven-day rolling average of new deaths, by number of days since 3 average daily deaths first recorded

Number of days since 3 average daily deaths first recorded

Source: Financial Times analysis of data from the European Centre for Disease Prevention and Control, the Covid Tracking Project,

the UK Dept of Health & Social Care and the Spanish Ministry of Health.

Data updated September 25 2020 12.46pm BST. Interactive version: ft.com/covid19

FINANCIAL TIMES

Coronavirus Tracked John Burn-Murdoch & Financial Times

The coronavirus crisis is different

Job growth (or loss) since each recession began, based on weekly earnings

Notes: Based on a three-month average to show the trend in volatile data.

Source: Labor Department via IPUMS, with methodology assistance from Ernie Tedeschi of Evercore ISI THE WASHINGTON POST

The Covid Economy Washington Post

The Value of Visualization

Record information Blueprints, photographs, seismographs, ... <u>Analyze data to support reasoning</u>

Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Convey information Communicate, inform, inspire Collaborate and revise

Goals of Visualization Research

- 1 Understand how visualizations convey information What do people perceive / comprehend? How do visualizations inform mental models?
- 2 Develop principles and techniques for creating effective visualizations and supporting analysis Leverage perception & augment cognition Improve ties between visualization & mental model

Course Topics

Data and Image Models

Sémiologie Graphique [Bertin 67]

Visualization Design

SlicerDicers' Sales Compared to Other Products

Problematic design

Visualization Design

Sales of SlicersDicers Compared to Sales of Other Products SlicerDicers' Sales Compared to Other Products July - December, 2011 vs. RoundTuits vs. NervousNellies 300% 300% \$650,000 250% 250% Monthly 200% AhNuts 200% \$600,000 150% 150% Slicers-\$550,000 100% Dicers 50% 50% NervousNellies \$500,000 0% 0% vs. Thingamagigs vs. Whatchamacallits \$450,000 300% 300% RingaDingies 250% 250% \$400,000 200% 200% \$350,000 150% 150% RoundTuits 100% 100% \$300,000 50% 50% 036 0% \$250,000 SlicerDicers vs. AhNuts vs. WileyWidgets 300% 300% \$200,000 250% 250% SweetNuthins \$150,000 200% 200% 150% 150% \$100,000 100% 100% ThingamaGigs 50% 50% \$50,000 0% \$0 vs. RingaDingies vs. SweetNuthins August Whatchamacallits 300% 300% July October November September December 250% 250% 200% 200% WileyWidgets 150% 150% 100% 100% 50% 50%

Problematic design

Redesign

0%

Jul Aug Sep Oct Nov Dec

0%

Jul Aug Sep Oct Nov Dec

Exploratory Data Analysis

Visualization Software

D3: Data-Driven Documents Vega-Lite / Altair

Animation

Animated transitions in statistical data graphics [Heer & Robertson 07]

Dymaxion Maps [Fuller 46]

Graphical Perception

The psychophysics of sensory function [Stevens 61]

Color

qualitative У П ŝ n TEA TFA qualitative diverging binary -1 0 +1 ΤE А diverging seque -10+1 1 1 -1 0 +1 diverging sequential diverging +10 -10 -1 0 +1 255075

Color Brewer

Hierarchies

Degree-Of-Interest Trees [Heer & Card 04]

👙 Vizster

File Options Tools

Interactive querying of 180M flight records in Falcon [Moritz et al. 2019]

Course Mechanics

You should expect to:

- **1** Evaluate and critique visualization designs
- 2 Learn visualization techniques & theory
- **3** Implement interactive data visualizations
- 4 Develop a substantial visualization project

Instructors

Instructors

Jeffrey HeerOH: Thu After LectureJane HoffswellOH: Tue After Lecture

Teaching Assistants

Mick Kittivorawang OH: Online / Ed

Kevin ChangOH: Mon 3-4p

Naveena Karusala

Yang Liu

OH: Wed 11a-12p

OH: Fri 1:30-2:30p

Mick Kittivorawong

chanwutk@cs.washington.edu

Research

- Labeling algorithm for chart annotation
- Data Visualization toolkit

Work Experience @OctoML

• Visualization of Relay IR and its TVM performance

Technical Experience

• TypeScript, D3, Vega/Vega-Lite, and general web programming

OH: by appointment + Discussion Board

Kevin Chang

kwchang2@cs

I'm a 5th year master's student interested in ML and data visualization.

FIRST, LET'S EXPLORE AT HOW SOME OF THE MAJOR TOPICS WERE FILTERED

My 442 final project:

https://cse442-18f.github.io/fp-divided-congress-and-coverage/

Naveena

- 4th year PhD student in the ICTD Lab
- Research in HCI and global development, specifically on health messaging to underserved populations
- Office hours: 11am-12pm on Wednesdays
- Excited to talk about: data ethics, using data as a tool for empowerment and advocacy

Yang Liu

Office Hours: Fri 1:30 - 2:30 pm (Tableau tutorial 10/16)

I'm a PhD student working on visualization and HCI. I took and TA-ed the graduate version of this class before. Looking forward to a new quarter!

Textbook

An Introduction to Designing With D3

Interactive Data Visualization

for the Web

Interactive Data Visualization for the Web, 2nd Edition

For learning D3! <u>Book available online.</u> <u>Code / examples on GitHub.</u>

We will be using **D3 v6**. <u>https://d3js.org</u>

O'REILLY[®]

Scott Murray

Interactive Vega-Lite Notebooks

Hands-on engagement with course concepts and tools using Observable (JavaScript) notebooks.

Readings

From books, notebooks, and linked articles. Material in class will loosely follow readings. Readings should be read by start of class. Post quizzes / comments on class forum. One comment per week (up through week 8). Post comments by Monday 11:59pm. You have 1 "pass" for the quarter.

Assignments

- CP Class Participation (10%)
 A1 Visualization Design (10%) Due 10/12
 A2 Exploratory Data Analysis (15%) Due 10/26
- A3 Interactive Prototype (25%) Due 11/9 Peer Evaluation - Due 11/16
- FP Final Project (40%)
 - Proposal Due 11/13
 - Milestone Prototype Due 12/1
 - Demonstration Video Due 12/9
 - Final Prototype Due 12/14

Final Project

- Produce interactive web-based visualizations Initial prototype and design review Final deliverables and video presentation Submit and publish online (GitHub) Projects from previous classes have been:
- Published as research papers
- Shared widely (some in the New York Times!)
- · Released as successful open source projects

Data Visualization for Social Good

Data Visualization for Social Good

Goal: find data of social or scientific import, design visualizations to explore or communicate it effectively.

Data Visualization for Social Good

Goal: find data of social or scientific import, design visualizations to explore or communicate it effectively.

The specific data domain is open-ended. Possibilities include transportation, housing, public health, education, climate, campaign finance, scientific research, and so on...

Data Visualization for Social Good

Goal: find data of social or scientific import, design visualizations to explore or communicate it effectively.

The specific data domain is open-ended. Possibilities include transportation, housing, public health, education, climate, campaign finance, scientific research, and so on...

You must identify a target audience. May be general (residents, voters) or specialized (scientists, policy makers).

Data Visualization for Social Good

Goal: find data of social or scientific import, design visualizations to explore or communicate it effectively.

The specific data domain is open-ended. Possibilities include transportation, housing, public health, education, climate, campaign finance, scientific research, and so on...

You must identify a target audience. May be general (residents, voters) or specialized (scientists, policy makers).

Use Assignment 2 to explore a data set of interest prior to committing to final project teams and topic!

Inspiration...

Change In Times (CSE 442, Spring '17)

Gunnar Olson, Halden Lin, Lilian Liang, and Shobhit Hathi

Locations of each train on the red, blue, and orange lines at 5:46 am. Hover over the diagram to the right to display trains at a different time.

Trains are on the right side of the track relative to the direction they are moving.

See the morning rush-hour, midday lull, afternoon rush-hour, and the evening lull.

MBTA Viz Barry & Card

Service starts at 5AM on Monday morning. Each line represents the path of one train. Time continues downward, so steeper lines indicate slower trains.

Since the red line splits, we show the Ashmont branch first then the Braintree branch. Trains on the Braintree branch "jump over" the Ashmont branch.

Train frequency increases around 6:30AM as morning rush hour begins.

Questions?

A1: Visualization Design

Design a static visualization for a data set.

The climate of a place can have a tremendous impact on people's lived experience. You will examine average monthly climate measurements for six major U.S. cities, roughly covering the edges of the continental United States.

You must choose the message you want to convey. What question(s) do you want to answer? What insight do you want to communicate?

A1: Visualization Design

Pick a guiding question, use it to title your vis.Design a static visualization for that question.You are free to use any tools (inc. pen & paper).

Deliverables (upload via Canvas; see A1 page) Image of your visualization (PNG or JPG format) Short description + design rationale (≤ 4 paragraphs)

Due by 11:59 pm, Monday October 12.