
Uncertainty Visualization
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Questions To Answer

What Does Uncertainty Mean?

How Should I Visualize It?

What Can Go Wrong?
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WHAT DOES UNCERTAINTY MEAN, 
ANYWAY?

Definitions and Bookkeeping
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Things “Uncertainty” Can Mean

Doubt
Risk
Variability
Error
Lack of Knowledge
Hedging
…
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A Bar Chart
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Measurement Uncertainty
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Forecast Uncertainty
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Model Uncertainty
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Decision Uncertainty
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Uncertainty Vis Pipeline

Pang et al.  Approaches to Uncertainty Visualization.  The Visual Computer, 1997. 10



Uncertainty Sources
Measurement Uncertainty: “We’re not sure what the 
data are”

Forecast Uncertainty: “We’re not sure what will 
happen to the data next”

Model Uncertainty: “We’re not sure how the data fit 
together”

Decision Uncertainty: “We’re not sure what to do with 
the data”
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Measurement Uncertainty
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Model Uncertainty
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Forecast Uncertainty
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Uncertainty Visualization

There are different types and sources of 
uncertainty.

We can quantify or model our uncertainty.

The visual presentation of uncertainty can 
clash with cognitive and perceptual biases.
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Terminology

Aleatory Uncertainty
Epistemic Uncertainty
Type I error
Type II error
Precision
Bias



What Will Happen When I Flip This Coin?
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What Will Happen When I Flip This Coin?

P(Heads) = 0.5

P(Tails) = 0.5
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Aleatory Uncertainty



Aleatory Uncertainty



Aleatory Uncertainty



Epistemic Uncertainty



Uncertainty Types

Aleatory
Variability: things that we 
don’t know (but can reason 
about the likelihood of).

Epistemic
Things we could in 
principle know for certain, 
but have not measured.



Should I Bring an Umbrella?



Type I and II Errors

C I

II C



The Boy Who Cried Wolf

Type I

😸

😱

Type II

🙀

😴

🐺
🐺

🐺
🐑



Did My Arrows Hit the Target?
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Precision & Bias

Precision
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Precision & Bias

Precision
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Precision & Bias

Precision
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Precision & Bias

Precision Accuracy

31



Precision & Bias

Precision Accuracy
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Precision & Bias

Precision Accuracy
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Precision & Bias

Precision Accuracy

BiasVariability
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What Does Uncertainty Mean?

Any one of a number of potentially 
interconnected quantitative, qualitative, or 
factors that affect the quality, reliability, or 
utility of your data or data-driven decisions. 
Anything that can cause you to be unsure 
about your data or how to use it.

35



What Does Uncertainty Mean?

Any one of a number of potentially 
interconnected quantitative, qualitative, or 
factors that affect the quality, reliability, or 
utility of your data or data-driven decisions. 
Anything that can cause you to be unsure 
about your data or how to use it.

LOTS OF THINGS
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HOW SHOULD I VISUALIZE 
UNCERTAINTY?

Uncertainty Maps and Model Visualization

37



Uncertainty Visualization Zoo

Jena et al. Uncertainty Visualisation: An Interactive Visual Survey.  PACVIS, 2020.
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Intervals

Correll and Gleicher. Error Bars Considered Harmful:
Exploring Alternate Encodings for Mean and Error. VIS, 2014. 
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Intervals

Kay et al. When (ish) is My Bus? User-centered Visualizations of
Uncertainty in Everyday, Mobile Predictive Systems. CHI, 2016. 
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Hypothetical Outcome Plots
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Song, Hayeon and Szafir, Danielle. Where’s My Data? Evaluating Visualizations with 
Missing Data.  IEEE VIS, 2018.

Missing Values
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Song, Hayeon and Szafir, Danielle. Where’s My Data? Evaluating Visualizations with 
Missing Data.  IEEE VIS, 2018.

Missing Values
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Special Case: Implicit Uncertainty
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Special Case: Implicit Uncertainty
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Special Case: Implicit Uncertainty
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Uncertainty Vis Pipeline

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
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SNAP

Data Map
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SNAP

Data Map Uncertainty Map
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Uncertainty Vis Pipeline

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
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Uncertainty Vis Pipeline

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
4) Unify the Data Map and Uncertainty Map
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How to Unify?

Data Map Uncertainty Map
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Juxtaposition

Data Map Uncertainty Map
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Superposition
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Superposition
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Bivariate Map



Superposition

Griethe, Henning and Schumann, Heidrun. The Visualization of Uncertain Data: Methods and 
Problems. SimVis, 2006.
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Uncertainty Vis Pipeline

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
4) Unify the Data Map and Uncertainty Map
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Uncertainty Vis Pipeline

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable
4) Unify the Data Map and Uncertainty Map
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Semiotics of Uncertainty

60



The Variable Matters!
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The Variable Matters!
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Semiotics of Uncertainty
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Semiotics of Uncertainty

MacEachren, Alan et al. Visual Semiotics & Uncertainty Visualization:  An empirical 
study.  IEEE VIS, 2012.
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Fuzziness Juxtaposition
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Fuzziness Superposition
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Size Juxtaposition
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Size Superposition
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“Sketchiness”

Boukhelifa, Nadia et al. Evaluating sketchiness as a visual variable for the depiction 
of qualitative uncertainty. IEEE VIS, 2012.

Wood, Jo et al. Sketchy rendering for information visualization. IEEE VIS, 2012.
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“Sketchiness”

Boukhelifa, Nadia et al. Evaluating sketchiness as a visual variable for the depiction 
of qualitative uncertainty. IEEE VIS, 2012.

Wood, Jo et al. Sketchy rendering for information visualization. IEEE VIS, 2012.
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Encoding Uncertainty

Some visual variables (like fuzziness and 
value) have a semiotic connection to 
uncertainty.

However, intuitive variables may not always 
be accurately interpreted!
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Model Visualization
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Polling Data
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The NYT Needle
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Polling Data
Candidate A is ahead 
of Candidate B in the 
polls, with 55% of the 
likely voters*
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Polling Data
Candidate A is ahead 
of Candidate B in the 
polls, with 55% of the 
likely voters*

*poll of 100 people, 
margin of error +/-5 
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Monte Carlo Approach
Candidate A is ahead 
of Candidate B in the 
polls, with 55% of the 
likely voters*

*poll of 100 people, 
margin of error +/-5 
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A Likely Voter
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Poll
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Poll
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Actual Election?
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Actual Election?
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Actual Election?
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Actual Election?
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Pangloss Plot
Candidate A is ahead 
of Candidate B in the 
polls, with 55% of the 
likely voters*

*poll of 100 people, 
margin of error +/-5 
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Bubble Swarm?
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Bubble Swarm?
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Model Visualization

Building models is necessary to quantify 
uncertainty

It is important to communicate the 
variability in model outcomes

Dynamic or ensemble displays can help 
communicate complex models
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How Should I Visualize Uncertainty?

Choose an appropriate visual variable 
based on the domain, literacy, and 
expertise of your audience. Be mindful that 
any display of uncertainty inherently 
increases the complexity of your 
visualization, and that there is a 
preference/performance gap.
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How Should I Visualize Uncertainty?

Choose an appropriate visual variable 
based on the domain, literacy, and 
expertise of your audience. Be mindful that 
any display of uncertainty inherently 
increases the complexity of your 
visualization, and that there is a 
preference/performance gap.

IT DEPENDS
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WHAT CAN GO WRONG WHEN 
VISUALIZING UNCERTAINTY?

Cognitive and Perceptual Biases and Disfluencies
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Savelli and Joslyn. The Advantages of Predictive Interval Forecasts for Non-Expert 
Users and the Impact of Visualizations. Applied Cog. Psych., 2013.
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“The high tomorrow 
will be 44, and the low 
will be 38”
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Deterministic Construal Error

Probabilistic data is 
misinterpreted as 
being deterministic.
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Savelli and Joslyn. The Advantages of Predictive Interval Forecasts for Non-Expert 
Users and the Impact of Visualizations. Applied Cog. Psych., 2013.
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Cone of Doom

Cox, Jonathan and House, Donald and Lindell, Michael. Visuazlising uncertainty in 
predicted hurricane tracks. International Journal for Uncertainty Quantification, 

2013. 107



Cone of Doom

Cox, Jonathan and House, Donald and Lindell, Michael. Visuazlising uncertainty in 
predicted hurricane tracks. International Journal for Uncertainty Quantification, 

2013.

😴 😰
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Spaghetti/Ensemble Plots

109



Spaghetti/Ensemble Plots

M. Mirzargar, R. Whitaker and R. Kirby. Curve Boxplot: Generalization of Boxplot for 
Ensembles of Curves.  IEEE VIS 2014. 
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Things That Can Wrong

People Confuse Uncertainty with Certainty
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Which Stock To Buy?

Company A
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Neither!

Company A
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What Swag Should We Send?

Zgraggen et al. “Investigating the Effect of the Multiple. Comparisons Problem in 
Visual Analysis. CHI 2018, to appear.
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Fake Insights

Zgraggen et al. “Investigating the Effect of the Multiple. Comparisons Problem in 
Visual Analysis. CHI 2018, to appear.
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Wu Wei
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Pareidolia
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Have People Made Up Their Mind 
About Obama?
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Lineups Protocol

121

Buja et al. Statistical inference for exploratory data analysis and model diagnostics. 
Royal Society, 2009.



Lineups Protocol
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Buja et al. Statistical inference for exploratory data analysis and model diagnostics. 
Royal Society, 2009.



Lineups Protocol!

Buja et al. Statistical inference for exploratory data analysis and model diagnostics. 
Royal Society, 2009.
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Distance vs. angle for 3 point shots by the LA Lakers.
One plot is the real data. The others are generated 
according to a null hypothesis of quadratic 
relationship.

Hadley Wickham et al. “Graphical inference for Infovis.” IEEE transactions on 
visualization and computer graphics 16.6 (2010): 973–9.
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Distance vs. angle for 3 point shots by the LA Lakers.
One plot is the real data. The others are generated 
according to a null hypothesis of quadratic 
relationship.

Hadley Wickham et al. “Graphical inference for Infovis.” IEEE transactions on 
visualization and computer graphics 16.6 (2010): 973–9.
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Negative Results

People tend to analyze patterns and make 
decisions, even if there is “nothing to see.”

Negative or null results can correspond to 
weak and non-robust visual patterns across 
a model space.
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Things That Can Wrong

People Confuse Uncertainty with Certainty

People Confuse Signal with Noise
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Base Rate Fallacy
1% of the villagers are werewolves

80% of werewolves are allergic to silver.

10% of innocent villagers are allergic to silver.

If a villager is allergic to silver, what’s the 
probability they are a werewolf?
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Bayes’ Law

P(A|B) = P(B|A)P(A) / P(B)
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Bayes’ Law

P(A|B) = P(B|A)P(A) / P(B)

P(🐺 | +Test) = P(+Test|🐺)P(🐺)/P(+Test)
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Bayes’ Law

P(A|B) = P(B|A)P(A) / P(B)

P(🐺 | +Test) = P(+Test|🐺)P(🐺)/P(+Test)

P(+) = P(+ ^ 🐺)P(🐺) + P(+^ ~🐺)P(~🐺)
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Bayes’ Law

P(A|B) = P(B|A)P(A) / P(B)

P(🐺 | +Test) = P(+Test|🐺)P(🐺)/P(+Test)

P(+) = P(+ ^ 🐺)P(🐺) + P(+^ ~🐺)P(~🐺)
P(+) = 0.01*0.8 + 0.99*0.1
P(+) = 0.107
P(🐺 | +) = 0.8 * 0.01 /  0.107 ≈ 0.075
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Problems

People are bad at this.

People who should be good at this are bad 
at it.

How you present the problem affects how 
bad people are at it.
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How To Present Probabilities
Probability

Percentage

Natural 
Frequency

P(A) = 0.6

60% chance of A

3 out of 5 times, A 
happens.

Less Intuitive

More Intuitive

Ottley, et al. “Improving Bayesian reasoning: the effects of phrasing, 
visualization, and spatial ability.” VIS 2016. 134



Quantile Dot Plots

Kay et al. “When(ish) is My Bus? User-centered Visualizations of 
Uncertainty in Everyday, Mobile Predictive Systems.”  CHI 2016.

Less Error

More Error
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Base Rate Fallacy

Micallef et al. “Assessing the Effect of Visualizations on Bayesian 
Reasoning Through Crowdsourcing.” VIS 2012. 136



Pangloss Dot Plot?
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Things That Can Wrong

People Confuse Uncertainty with Certainty

People Confuse Signal with Noise

People Confuse Probabilities with ???
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What Can Go Wrong?

Uncertainty can be difficult to understand 
and require a statistical background and 
high numeracy. Additionally, cognitive and 
perceptual biases can result in people 
making poor or error-prone decisions from 
uncertain data.
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What Can Go Wrong?

Uncertainty can be difficult to understand 
and require a statistical background and 
high numeracy. Additionally, cognitive and 
perceptual biases can result in people 
making poor or error-prone decisions from 
uncertain data.

A LOT
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Questions To Answer

What Does Uncertainty Mean?

How Should I Visualize It?

What Can Go Wrong?
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Questions To Answer

What Does Uncertainty Mean?

How Should I Visualize It?

What Can Go Wrong?

LOTS OF THINGS

IT DEPENDS

A LOT
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Wrap Up

Uncertainty can happen at all stages of the 
analysis process, from data collection to 
final decision-making
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Wrap Up

Variables like blur and transparency can be 
intuitive for showing uncertainty, but hard 
to decode.
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Wrap Up

Consider using discrete samples to show 
variation and uncertainty in a model
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Wrap Up

Consider when uncertainty is high enough 
that doing nothing is the right thing to do.
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Topics I Didn’t Cover

Uncertainty Quantification

Uncertainty Visualization Evaluation

Visualization Verification

… lots more
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Questions?

Michael Correll Tableau Research 148


