CSE 442 - Data Visualization

Text Visualization

Jeffrey Heer University of Washington
Why Visualize Text?
Why Visualize Text?

Understanding - get the “gist” of a document

Grouping - cluster for overview or classification

Comparison - compare document collections, or inspect evolution of collection over time

Correlation - compare patterns in text to those in other data, e.g., correlate with social network
Text as Data

Documents
Articles, books and novels
E-mails, web pages, blogs
Tags, comments
Computer programs, logs

Collections of Documents
Messages (e-mail, blogs, tags, comments)
Social networks (personal profiles)
Academic collaborations (publications)
Example: Health Care Reform
Example: Health Care Reform

Recent History
Initiatives by President Clinton
Overhaul by President Obama

Text Data
News articles
Speech transcriptions
Legal documents

What questions might you want to answer?
What visualizations might help?
September 10, 2009

TEXT

Obama’s Health Care Speech to Congress

Following is the prepared text of President Obama’s speech to Congress on the need to overhaul health care in the United States, as released by the White House.

Madame Speaker, Vice President Biden, Members of Congress, and the American people:

When I spoke here last winter, this nation was facing the worst economic crisis since the Great Depression. We were losing an average of 700,000 jobs per month. Credit was frozen. And our financial system was on the verge of collapse.

As any American who is still looking for work or a way to pay their bills will tell you, we are by no means out of the woods. A full and vibrant recovery is many months away. And I will not let up until those Americans who seek jobs can find them; until those businesses that seek capital and credit can thrive; until all responsible homeowners can stay in their homes. That is our ultimate goal. But thanks to the bold and decisive action we have taken since January, I can stand here with confidence and say that we have pulled this economy back from the brink.

I want to thank the members of this body for your efforts and your support in these last several months, and especially those who have taken the difficult votes that have put us on a path to recovery. I also want to thank the American people for their patience and resolve during this trying time for our nation.

But we did not come here just to clean up crises. We came to build a future. So tonight, I return to speak to all of you
Tag Clouds: Word Count

President Obama’s Health Care Speech to Congress [NY Times]

Word Tree: Word Sequences

Visualizations: Word Tree President Obama's Address to Congress on Health Care
I will let up until those Americans who seek jobs can find them -- (applause) -- until those are back down on the basic principle that if Americans can't find affordable coverage, we sign a plan that adds one dime to our deficits -- either now or in the future, period.

I will not make that same mistake with health care.

I will not waste time with those who have made the calculation that it's better politics to kill this than save it.

I will not accept the status quo as a solution.

I will make sure that no government bureaucrat or insurance company bureaucrat gets between you and the care you need.

I will continue to seek common ground in the weeks ahead.

I will still believe that we can still believe we can act when it's hard.
Many text visualizations do not represent the text directly. They represent the output of a language model (word counts, word sequences, etc.).

- Can you interpret the visualization? How well does it convey the properties of the model?
- Do you trust the model? How does the model enable us to reason about the text?
Text Visualization Challenges

High Dimensionality
Where possible use text to represent text…
… which terms are the most descriptive?

Context & Semantics
Provide relevant context to aid understanding.
Show (or provide access to) the source text.

Modeling Abstraction
Determine your analysis task.
Understand abstraction of your language models.
Match analysis task with appropriate tools and models.
Topics

Text as Data
Visualizing Document Content
Visualizing Conversation
Document Collections
Text as Data
Words as nominal data?

High dimensional (10,000+)

More than equality tests

Words have meanings and relations

- Correlations: Hong Kong, Puget Sound, Bay Area
- Order: April, February, January, June, March, May
- Membership: Tennis, Running, Swimming, Hiking, Piano
- Hierarchy, antonyms & synonyms, entities, …
1. Tokenization

Segment text into terms.
Remove stop words? *a, an, the, of, to, be*
Numbers and symbols? *#huskies, @UW, OMG!!!!!!!*
Entities? *Washington State, O’Connor, U.S.A.*
1. **Tokenization**

 Segment text into terms.

 - Remove stop words? *a, an, the, of, to, be*
 - Numbers and symbols? *#huskies, @UW, OMG!!!!!!!*
 - Entities? *Washington State, O’Connor, U.S.A.*

2. **Stemming**

 Group together different forms of a word.

 - Porter stemmer? *visualization(s), visualize(s), visually* -> *visual*
 - Lemmatization? *goes, went, gone* -> *go*
Text Processing Pipeline

1. Tokenization
 Segment text into terms.
 Remove stop words? a, an, the, of, to, be
 Numbers and symbols? #huskies, @UW, OMG!!!!!!!
 Entities? Washington State, O’Connor, U.S.A.

2. Stemming
 Group together different forms of a word.
 Porter stemmer? visualization(s), visualize(s), visually -> visual
 Lemmatization? goes, went, gone -> go

3. Ordered list of terms
Bag of Words Model

Ignore ordering relationships within the text

A document \(\approx\) vector of term weights

- Each dimension corresponds to a term (10,000+)
- Each value represents the relevance

 For example, simple term counts

Aggregate into a document-term matrix

- Document vector space model
Each document is a vector of term weights

Simplest weighting is to just count occurrences

<table>
<thead>
<tr>
<th>Document-Term Matrix</th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
WordCounts (Harris ’04)

http://wordcount.org
Tag Clouds

Strengths
Can help with gisting and initial query formation.

Weaknesses
Sub-optimal visual encoding (size vs. position)
Inaccurate size encoding (long words are bigger)
May not facilitate comparison (unstable layout)
Term frequency may not be meaningful
Does not show the structure of the text
Given a text, what are the best descriptive words?
Partisan Words, 106th Congress, Abortion
(Log-Odds-Ratio, Smoothed Log-Odds-Ratio)

Frequency of Word within Topic

bankruptcy
snow
ratifi
confidenti
church
schumer
chosen
voter
wage
1974
attach
attornei
idaho
sadli
coverag
d
juri
mikulski
robb
secondli
product
andrew
tonight
necessarili
martin
peter
leg
harvest
frist
bright
anim
trade
taught
dayton
obvious
40
industri
chines
admit
infant
Keyword Weighting

Term Frequency

\[tf_{td} = \text{count}(t) \text{ in } d \]

Can take log frequency: \(\log(1 + tf_{td}) \)

Can normalize to show proportion: \(tf_{td} / \sum_t tf_{td} \)
Keyword Weighting

Term Frequency
\[tf_{td} = \text{count}(t) \text{ in } d \]

TF.IDF: Term Freq by Inverse Document Freq
\[tf.idf_{td} = \log(1 + tf_{td}) \times \log(N/df_t) \]
\[df_t = \# \text{ docs containing } t; \ N = \# \text{ of docs} \]
Keyword Weighting

Term Frequency
\[tf_{td} = \text{count}(t) \text{ in } d \]

TF.IDF: Term Freq by Inverse Document Freq
\[tf.idf_{td} = \log(1 + tf_{td}) \times \log(N/df_t) \]
\[df_t = \# \text{ docs containing } t; \quad N = \# \text{ of docs} \]

\(G^2 \): Probability of different word frequency
\[E_1 = |d| \times (tf_{td} + tf_{t(C-d)}) / |C| \]
\[E_2 = |C-d| \times (tf_{td} + tf_{t(C-d)}) / |C| \]
\[G^2 = 2 \times (tf_{td} \log(tf_{td}/E_1) + tf_{t(C-d)} \log(tf_{t(C-d)}/E_2)) \]

Require comparison across full corpus!
Limitations of Freq. Statistics

Typically focus on unigrams (single terms)

Often favors frequent (TF) or rare (IDF) terms
 Not clear that these provide best description

A “bag of words” ignores additional information
 Grammar / part-of-speech
 Position within document
 Recognizable entities
How do people describe text?

We asked 69 subjects (graduate students) to read and describe dissertation abstracts.

Students were given 3 documents in sequence; they then described the collection as a whole.

Students were matched to both familiar and unfamiliar topics; topical diversity within a collection was varied systematically.

[Chuang, Manning & Heer, 2012]
Bigrams (phrases of 2 words) are the most common.
Phrase length declines with more docs & more diversity.
Term Commonness

\[
\log(\text{tf}_w) / \log(\text{tf}_{\text{the}})
\]

The normalized term frequency relative to the most frequent n-gram, e.g., the word “the”. Measured across a corpus or across the entire English language (using Google n-grams)
Selected descriptive terms have medium commonness. Judges avoid both rare and common words.
Commonness increases with more docs & more diversity.
Scoring Terms with Freq, Grammar & Position

- Best-Performing Model
- Corpus-Independent Model
- log tf + All Commonness
- G^2
- log tf

Precision vs. Recall graph showing performance of different scoring terms.
A fighter jet rain check

Story and video by Chamila Jayaweera

Have you ever thought about what it takes to make sure that sea-based fighter jets stay dry?

When it comes to the F/A-18 Super Hornet, Boeing engineers in St. Louis use a special process called the Water Check Test to rule out areas where moisture could seep into the aircraft and its electronics suite.

Program experts douse the jet with simulated rain at a 15-inch-per-hour rate for about 20 minutes inside an enormous hangar in St. Louis.

"Our ultimate customers are U.S. Navy fighter pilots, and we want to ensure their safety in flight and on the ground, and water-tight integrity of the aircraft also helps increase their effectiveness," said Boeing’s Rich Baxter, F/A-18 Super Hornet final assembly manager.

To find out more about how the process works and watch the action unfold, click above to see the video story.
G² Regression Model

Fighter
F/A
Hornet
Super
Boeing
-18
rain
St.
jet
Louis
15-inch-per-hour
douse
hangar
water-tight
Check
Baxter
sea-based
aircraft
Rich
seep
click
Navy
sure
Water
moisture
watch
enormous
stay

Super Hornet
F/A -18
fighter jet
Boeing engineers
special process
rain check
electronics suite
Program experts
simulated rain
ultimate customers
enormous hangar
water-tight integrity
Rich Baxter
15-inch-per-hour rate
video story
aircraft
U.S. Navy fighter pilots
Super Hornet final assembly manager
Yelp Review Spotlight (Yatani 2011)

expensive or cheap? wait
what type of sushi roll?

“long wait” or “no wait”?
Yelp Review Spotlight (Yatani 2011)

'09 amazing around baked bar bass best chef delicious eat

elite e hawaii l night

expensive sake small table

table b)

best sf

baked sea bass best sushi

fresh fish slow service

baked mussel more hour

sushi restaurant good food

long wait long time small place

baked mango delicious everything

Mentioned 63 times

possess sage of the halos wisdom, and know in advance sushi zone only accepts cash and the waits will be long and arduous.

yes, it's a long wait, learn the master of zen if you want to eat here.
Tips: Descriptive Phrases

Understand the limitations of your language model.

Bag of words:
- Easy to compute
- Single words
- Loss of word ordering

Select appropriate model and visualization
- Generate longer, more meaningful phrases
- Adjective-noun word pairs for reviews
- Show keyphrases within source text
Information Retrieval

Search for documents
Match query string with documents
Visualization to contextualize results
FR88513–0157
AP: Groups Seek $1 Billion a Year for Aging Research

SJMN: WOMEN'S HEALTH LEGISLATION PROPOSED
AP: Older Athletes Run For Science

FR: Committee Meetings
FR: October Advisory Committees; Meetings
FR88120–0046
FR: Chronic Disease Burden and Prevention Models; Program
AP: Survey Says Experts Split on Diversion of Funds for AIDS
FR: Consolidated Delegations of Authority for Policy Development
SJMN: RESEARCH FOR BREAST CANCER IS STUCK IN P
text: ROM 9:5 Whose are the fathers, and of whom as concerning the flesh Christ came, who is over all, God blessed for ever. Amen.
The 2007 State of the Union Address

Over the years, President Bush's State of the Union address has averaged almost 5,000 words each, meaning the President has delivered over 34,000 words. Some words appear frequently while others appear only sporadically. Use the tools below to analyze what Mr. Bush has said.

Use of the phrase "Tax" in past State of the Union Addresses

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>29</td>
<td>13</td>
<td>21</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Compared with other words

- Tax: 10, 10, 10, 10, 10, 10, 10
- Afghanistan: 13, 3, 3, 5, 2, 4
- Economy: 6, 17, 14, 23, 8
- Insurance: 2, 1, 1, 3, 14
- Iraq/Iraq: 2, 21, 24, 27, 16, 34
- Iran: 2, 3, 1, 3, 6, 5
- Oil: 1, -1, -1, -1, 3, 9
- Social Security: 15, 2, 2, 2, 18, 3, 2

The word in context

I believe in local control of schools. We should not, and we will not, run public schools from Washington, D.C. Yet when the federal government spends TAX dollars, we must insist on results. Children should be tested on basic reading and math skills every year between grades three and eight. Measuring is the only way to know whether all our children are learning. And I want to know, because I refuse to leave any child behind in America.

-- 2001 (Paragraph 14 of 73)

New York Times
Concordance

What is the common local context of a term?
if love be rough with you, be rough with love.
if love be blind, love cannot hit the mark.
if love be blind, it best agrees with night.
love the Lord thy God, with all thy heart, and with all thy soul, and with all thy mind.

And thy servant Jacob shall be a burnt offering, and thy people Israel a fire that consumeth; and all the seed of Ephraim shall be consumed like a thicket in the wilderness.

And the Lord was with them, and performed wonders among them, and gave them rest all the days of Joshua.

And the elders of Israel chose Joshua and set him before Moses, and the elders of Israel spake unto Moses, saying, We will make for our brother Joshua sons of Israel.

And the Lord spake unto Moses, saying, I have taken thy brother Joshua, the son of Nun, and have put the spirit of wisdom in him.

And it came to pass, when all the people saw the fire come down from heaven, and devoured the meat, that all the people feared, and stood up, and said, The Lord will judge the people.

And Moses went up into the mountain to receive the tables of the law, which Moses brought down out of the mountain.

And Moses took the tables, and came down out of the mountain, and gave them to the people.

And the people of Israel stood up and saw the fire coming down from heaven, and the Lord was speaking to Moses, and the people feared, and stood up, and said, The Lord will judge the people.

And the Lord spake unto Moses, saying, I have taken thy brother Joshua, the son of Nun, and have put the spirit of wisdom in him.

And Moses took the tables, and came down out of the mountain, and gave them to the people.
Filter Infrequent Runs
Recurrent Themes in Speeches

“I have a dream that one day...”

this nation will rise up and live out the true meaning of its creed: “We hold these truths to be self-evident,”

on the red hills of Georgia the sons of former slaves and the sons of former slave owners will be able to sit down together at

even the state of Mississippi, a state sweltering with the heat of injustice, sweltering with the heat of oppression, will be transformed into

down in Alabama, with its vicious racists, with its governor having his lips dripping with the words of interposition and nullification - one day

every valley shall be exalted, and every hill and mountain shall be made low, the rough places will be made plain, and the

my four little children will one day live in a nation where they will not be judged by the color of their skin but by the
Glimpses of Structure...

Concordances show local, repeated structure

But what about other types of patterns?

 lexical: \(<A>\) at \(\)

 syntactic: \(<\text{Noun}>\) \(<\text{Verb}>\) \(<\text{Object}>\)
Phrase Nets [van Ham et al.]

Look for specific **linking patterns** in the text:

Could be output of regexp or parser.

Visualize patterns in a node-link view

Occurrences -> Node size

Pattern position -> Edge direction
Portrait of the Artist as a Young Man

X and Y
Node Grouping
The Bible
X begat Y
New Testament

X of Y
Understand Your Analysis Task
Visually: Word position, browsing, brush & link
Semantically: Word sequence, hierarchy, clustering
Both: Spatial layout reflects semantic relationships

The Role of Interaction
Language model supports visual analysis cycles
Allow modifications to the model: custom patterns for expressing contextual or domain knowledge
Conversations
Visualizing Conversation

Many dimensions to consider:
Who (senders, receivers)
What (the content of communication)
When (temporal patterns)

Interesting cross-products:
What x When -> Topic "Zeitgeist"
Who x Who -> Social network
Who x Who x What x When -> Information flow
Naming Names
Names used by major presidential candidates in the series of Democratic and Republican debates leading up to the Iowa caucuses.

Roll over any candidate’s name for details.

Each thin line represents one candidate speaking the last name of another candidate.

Every line ends at an arrow, which points to the name that was spoken.

The length of each circle segment represents the total number of words spoken by the candidate during the debates. Each tick mark represents 1,000 words.

Each slice represents one debate, arranged clockwise from the first to the final debate.

Source: Debate transcripts
Jonathan Corum and Farhana Hossain/The New York Times
Usenet Visualization [Viegas & Smith]

Show correspondence patterns in text forums
Initiate vs. reply; size and duration of discussion
Email Mountain [Viegas]

Conversation by person over time (who x when).
One person over time, TF.IDF weighted terms
Enron E-Mail Corpus

[Heer]
2000-09-01 04:25:00.0 Linda Jenkins on "Jerry's Show" Mon: 10:14:00.0 Re: The Governors' Natural Gas Summit 2000-09-08 10:03:00.0 2000-09-10 14:07:00.0 CPUC Hearing in 3D on 9/8 2000-09-10 16:20:00.0 Re: Fletcher School/Enron 2000-09-13 06:57:00.0 Re: Contact

ID: 174285
Subject: From: <stevenc.kean@enron.com> Date: 2000-09-08 10:02:00.0
To: <kmagrude@enron.com> Cc: Richard Shapiro <richard.shapiro@enron.com>

Got your message. I'm testifying at the Congressional hearing and Davesich is covering FERC. I think Jeff's comments were taken out of context. He said policymakers need to take care of small customers whose bills are tripling. Frankly, we'd get slaughtered if we said anything else. But he also said there is a right way and a wrong way to do it. Enron and others had provided a market-based answer by offering a fixed price deal to SFOZ (which would have enabled them to cap rates to those who had not switched). California elected instead to cap rates and deficit spend (ie create a deferral account). I don't think we can stand for anything that doesn't protect the small customers, but we can continue to emphasize the market-based solutions. One of the messages in my testimony will be: customers shouldn't be encouraged to choose. Those who did are doing fine.
Enron 'Mastermind' Pleads Guilty

SAN FRANCISCO, Oct. 17, 2002

(AP) A former top energy trader, considered the mastermind of Enron Corp.'s scheme to drive up California's energy prices, pleaded guilty Thursday to a federal conspiracy charge.

Deputy Attorney General Larry Thompson, center, head of the Justice Department's Corporate Fraud Task Force, comments Thursday on the guilty plea by Timothy N. Belden, Enron's chief energy trader. (Photo: CBS/AP)

"I did it because I was trying to maximize profit for Enron," Belden told U.S. District Judge Martin Jenkins.

Timothy Belden, the former head of trading in Enron's Portland, Ore., office, admitted to one count of conspiracy to commit wire fraud and promised to cooperate with state and federal prosecutors as well as any non-criminal effort to investigate the energy industry.
Document Collections
Named Entity Recognition

Label named entities in text:
John Smith -> PERSON
Soviet Union -> COUNTRY
353 Serra St -> ADDRESS
(555) 721-4312 -> PHONE NUMBER

Entity relations: how do the entities relate?
Simple approach: do they co-occur in a small window of text?
Parallel Tag Clouds [Collins et al.]
Theme River [Havre et al.]

- Nationalization of property begins
- Castro confiscates American refineries
- Eisenhower breaks relations
- Bay of Pigs

Year:
- 1961

Events:
- May
- Jun
- Jul
- Aug
- Sep
- Oct
- Nov
- Dec
- Jan
- Feb
- Mar
- Apr
- May
- Jun
Similarity & Clustering

Compute vector distance among docs
For TF.IDF, typically cosine distance
Similarity measure can be used to cluster

Topic modeling
Assume documents are a mixture of topics
Topics are (roughly) a set of co-occurring terms
Latent Semantic Analysis (LSA): reduce term matrix
Latent Dirichlet Allocation (LDA): statistical model
Effective statistical models for syntactic and semantic disambiguation

Student: Kristina Nikolova Toutanova
Advisor: Christopher D. Manning

Computer Science (2005)

Keywords: Syntactic, Semantic, Tree kernels, Parsing

Abstract:

This thesis focuses on building effective statistical models for disambiguation of sophisticated syntactic and semantic natural language (NL) structures. We advance the state of the art in several domains by (i) choosing representations that encode domain knowledge more effectively and (ii) developing machine learning algorithms that deal with the specific properties of NL disambiguation tasks—sparsity of training data and large, structured spaces of hidden labels. For the task of syntactic disambiguation, we propose a novel representation of parse trees that connects the words of the sentence with the hidden syntactic structure in a direct way. Experimental evaluation on a Head Driven Phrase Structure Grammar shows the new representation achieves superior performance compared to previous models. For the task of disambiguating the semantic role structure of verbs, we build a more accurate model, which captures the knowledge that the semantic frame of a verb is a joint structure with strong dependencies between arguments. We achieve this using a Conditional Random Field without Markov independence assumptions on the sequence of semantic role labels. To address the sparsity problem in machine learning for NL, we develop a method for incorporating many additional sources of information, using Markov chains in the space of words. The Markov chain framework makes it possible to combine multiple knowledge sources, to learn how much to trust each of them, and to chain inferences together. It achieves large gains in the task of disambiguating prepositional phrase attachments.
Topic Distance Between Stanford Depts

Area of circles denote number of theses in a given year.
Depts with no thesis produced are faded out.

Purple = Medicine
Green = Sciences
Blue = Engineering
Orange/Pink = Humanities
Oh, the humanities!
Effective statistical models for syntactic and semantic disambiguation

Student: Kristina Nikolova Toutanova
Advisor: Christopher D. Manning

Keywords: Syntactic, Semantic, Tree kernels, Parsing

Abstract:

This thesis focuses on building effective statistical models for disambiguation of sophisticated syntactic and semantic natural language (NL) structures. We advance the state of the art in several domains by (i) choosing representations that encode domain knowledge more effectively and (ii) developing machine learning algorithms that deal with the specific properties of NL disambiguation tasks—sparsity of training data and large, structured spaces of hidden labels. For the task of syntactic disambiguation, we propose a novel representation of parse trees that connects the words of the sentence with the hidden syntactic structure in a direct way. Experimental evaluation on parse selection for a Head Driven Phrase Structure Grammar shows the new representation achieves superior performance compared to previous models. For the task of disambiguating the semantic role structure of verbs, we build a more accurate model, which captures the knowledge that the semantic frame of a verb is a joint structure with strong dependencies between arguments. We achieve this using a Conditional Random Field without Markov independence assumptions on the sequence of semantic role labels. To address the sparsity problem in machine learning for NL, we develop a method for incorporating many additional sources of information, using Markov chains in the space of words. The Markov chain framework makes it possible to combine multiple knowledge sources, to learn how much to trust each of them, and to chain inferences together. It achieves large gains in the task of disambiguating prepositional phrase attachments.
“Word Borrowing” via Labeled LDA
Summary

High Dimensionality
Where possible use text to represent text…
… which terms are the most descriptive?

Context & Semantics
Provide relevant context to aid understanding.
Show (or provide access to) the source text.

Modeling Abstraction
Understand abstraction of your language models.
Match analysis task with appropriate tools and models.

Future: from bag-of-words to vector space embeddings