
CSE 442 - Data Visualization

Hierarchies

Jeffrey Heer University of Washington

Today: Visualizing Hierarchical Data
Next Time: Visualizing Network Data

Goals
Overview of layout approaches
Assess strengths and weaknesses
Insight into implementation techniques

Graphs and Trees

Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges
Nodes as parents and children

Graphs and Trees

A primary concern of tree/graph drawing is
the spatial arrangement of nodes and edges.

Often (but not always) the goal is to
effectively depict the graph structure:
- Connectivity, path-following
- Topological distance
- Clustering / grouping
- Ordering (e.g., hierarchy level)

Spatial Layout

Indentation
Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams
Represent hierarchy by enclosure
Layering
Relative position and alignment

Typically fast: O(n) or O(n log n), interactive layout

Tree Visualization

Interactive Layout Demo (requires Flash Player)

http://flare.prefuse.org/demo
http://flare.prefuse.org/demo

Tree Layout

Places all items along
vertically spaced rows
Indentation used to show
parent/child relationships
Commonly used as a
component in an interface
Breadth and depth
contend for space
Often requires a great
deal of scrolling

Indentation

Single-Focus (Accordion) List

Separate breadth & depth along 2D.
Focus on a single path at a time.

Nodes are distributed in space, connected by
straight or curved lines
Typical approach is to use 2D space to break
apart breadth and depth
Often space is used to communicate hierarchical
orientation (e.g., towards authority or generality)

Node-Link Diagrams

Naïve Recursive Layout

Repeatedly divide space for subtrees by leaf count
▪ Breadth of tree along one dimension
▪ Depth along the other dimension

Naïve Recursive Layout

Repeatedly divide space for subtrees by leaf count
▪ Breadth of tree along one dimension
▪ Depth along the other dimension
Problem: exponential growth of breadth

Goal: make smarter use
of space, maximize
density and symmetry.
Originally binary trees,
extended by Walker to
cover general case.
Corrected by Buchheim
et al. to achieve a linear
time algorithm.

Reingold & Tilford’s “Tidy” Layout

Design Considerations
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

Reingold-Tilford Layout

Initial bottom-up (post-order) traversal of the tree
 Y-coordinates based on tree depth
 X-coordinates set piecemeal via “shifts” at each depth

At each parent node: merge left and right subtrees
 Shift right subtree as close as possible to the left
 Computed efficiently by maintaining subtree contours
 “Shifts” in position saved for each node
 Parent nodes centered above children

Final top-down (pre-order) traversal to set X-coordinates
 Sum initial layout and aggregated shifts

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

12

Reingold-Tilford Layout

Reingold-Tilford Layout

0

Reingold-Tilford Layout

0

1

Reingold-Tilford Layout

0

1

2

Reingold-Tilford Layout

0

1

2

3

4

Reingold-Tilford Layout

0

1

2

3

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

Reingold-Tilford Layout

5

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

12

Reingold-Tilford Layout

Depicts cluster trees
produced by hierarchical
clustering algorithms.

Leaf nodes arranged in a
line, internal node depth
indicates order/value at
which clusters merge.

Naïve recursive layout
with orthogonal two-
segment edges.

Cluster Dendrograms

Node-link diagram in
polar co-ordinates.

Radius encodes depth,
with root in the center.

Angular sectors assigned
to subtrees (often with
naïve recursive layout).

Reingold-Tilford method
can also be applied here.

Radial Tree Layout

https://vega.github.io/vega/examples/radial-tree-layout/

Layout in 3D to form
Cone Trees.

Balloon Trees can be
described as a 2D
variant of a Cone Tree.
Not just a flattening
process: circles must
not overlap.

Circular Tree Layout

Focus + Context

………

Indented Layout Reingold-Tilford Layout

Visualizing Large Hierarchies

Scale
Tree breadth often grows exponentially
Even with tidy layout, quickly run out of space

Possible Solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

More Nodes, More Problems…

MC Escher, Circle Limit IV

Perform tree layout in
hyperbolic geometry,
project the result on to
the Euclidean plane.

Why? Like tree breadth,
the hyperbolic plane
expands exponentially!

Also computable in 3D,
projected into a sphere.

Hyperbolic Layout

Space-constrained, multi-focal tree layout

Degree-of-Interest Trees

Remove “low interest” nodes at a given depth level
until all blocks on a level fit within bounds.
Attempt to center child blocks beneath parents.

Degree-of-Interest Trees

Enclosure

Encode structure using spatial enclosure
Popularly known as treemaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read structure / depth

Enclosure Diagrams

Nodes are represented
as sized circles.

Nesting shows parent-
child relationships.

Issues?
Inefficient use of space.
Parent size misleading?

Circle Packing Layout

https://bl.ocks.org/mbostock/ca5b03a33affa4160321

Hierarchy visualization that emphasizes
values of nodes via area encoding.
Partition 2D space such that leaf nodes
have sizes proportional to data values.
First layout algorithms proposed by
Shneiderman et al. in 1990, with focus on
showing file sizes on a hard drive.

Treemaps

http://www.cs.umd.edu/hcil/treemap-history/

Slice & Dice layout: Alternate horizontal / vertical partitions.

http://www.cs.umd.edu/hcil/treemap-history/

Wattenberg 1998

Squarifed layout: Try to produce square (1:1) aspect ratios

Slice & Dice layout suffers from extreme aspect
ratios. How might we do better?

Squarified layout: greedy optimization for
objective of square rectangles. Slice/dice within
siblings; alternate whenever ratio worsens.

Squarified Treemaps [Bruls et al. ’00]

vs.

http://www.cs.umd.edu/hcil/treemap-history/

Interactive Example…

https://vega.github.io/vega/examples/treemap/

Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.
 Mathematically true!

2. Easier to select with a mouse cursor.
 Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
 Seems intuitive, but is this true?

Why Squares? [Bruls et al. ’00]

Study by Kong, Heer & Agrawala, InfoVis ’10.
Comparison of squares has higher error!
“Squarify” works because it fails to meet its objective?

Comparison Error vs. Aspect Ratio

Squares

Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.
 Mathematically true!

2. Easier to select with a mouse cursor.
 Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
 Seems intuitive, but is this true?

Why Squares? [Bruls et al. ’00]

Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.
 Mathematically true!

2. Easier to select with a mouse cursor.
 Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
 Extreme ratios & squares-only more inaccurate.
 Balanced ratios better? Target golden ratio?

Why Squares? [Bruls et al. ’00]

Position is generally more effective than area, but…
What happens when the element count gets high?
What happens when comparing groups of elements,
such as leaf values vs. internal node values?

Treemaps vs. Bar Charts [Kong et al. ’10]

At low densities (< 4k elements), bar charts more
accurate than treemaps for leaf-node comparisons.
At higher density, treemaps led to faster judgments.
Treemaps better for group-level comparisons.

Treemaps vs. Bar Charts [Kong et al. ’10]

Uses shading to emphasize hierarchal structure.

Cushion Treemaps [van Wijk & Wetering ’99]

Uses 2.5D effect to emphasize hierarchy relations.

Cascaded Treemaps [Lü & Fogarty ’08]

Instead of rectangles,
create treemaps with
arbitrary polygonal
shapes and boundary.

Use iterative, weighted
Voronoi tessellations to
achieve cells with value-
proportional areas.

Voronoi Treemaps [Balzer et al. ’05]

Iterative Voronoi Tesselations [Jason Davies]

https://www.jasondavies.com/voronoi-treemap/

Layering

Signify tree structure using:
- Layering
- Adjacency
- Alignment

Involves recursive sub-division of space.

Leaf nodes may be sized by value, parent size
visualizes sum of descendant leaf values.

Layered Diagrams

Icicle Trees: Cartesian Partition

“Sunburst” Trees: Polar Partition

https://bl.ocks.org/kerryrodden/766f8f6d31f645c39f488a0befa1e3c8

Layered Trees Useful Elsewhere…

Hybrids

Hybrids are also possible…

“Elastic Hierarchies”

Node-link diagram
with treemap nodes.

Little uptake for real-
world use…

Administrivia

Interactive Web Page
Working (near-final) version due Wed 5/31.
Final version due by showcase on Mon 6/5.

Demonstration Video (<= 2 min)
Due Wed 5/31. We will show in-class on 6/1!

Poster & Demo for Final Showcase
Monday 6/5, 10:30am-1pm in Allen Center atrium.
External judges will award top projects!

Read assignment description for more!

Final Project Deliverables

http://courses.cs.washington.edu/courses/cse442/17sp/fp-deliverables.html

When: Monday June 5, 10:30am - 1pm.
Where: Allen Center Atrium

The event is open to the public. Invite your friends!

Public showing begins at 11am. Arrive at 10:30am
to set up your poster and demo. Be prepared to
give a ~3 min. presentation + demo to visitors.

Invited judges will rate & award the top projects.

Refreshments will be served!

Final Project Showcase

Focus on a compelling real-world use.
Who is your user? How do you gauge success?

Consider multiple design alternatives.
Prototype quickly (use Tableau, R, Gephi…).

Seek feedback (representative users, peers, …).
Even informal usage can provide insights.

Choose appropriate team roles.

Start early (and read the suggested paper!)

Tips for a Successful Project

Animated Transitions
in Tree Visualizations

Cone Trees [Robertson 91]

Animate pivots across
intersecting hierarchies.
Tested a number of
animation parameters.
Best duration: ~1 sec
Rotational movement
degraded performance,
translation preferred.

Polyarchies [Robertson 02]

Animation of expanding/collapsing branches

Degree-of-Interest Trees [Heer 04]

Break animated transitions into discrete stages

Space Tree [Grosjean 04]

Optimize animation to aid comprehension
http://people.ischool.berkeley.edu/~rachna/gtv/

Radial Graph Layout

http://people.ischool.berkeley.edu/~rachna/gtv/

Help maintain context of nodes and general
orientation of user during refocus.

Transition Paths
Linear interpolation of polar coordinates
Node moves in an arc, not straight lines
Moves along circle if not changing levels
When changing levels, spirals to next ring

Animation in Radial Graph Layout

Transition constraints
Minimize rotational travel (move former parent

away from new focus in same orientation)
Avoid cross-over of edges

Animation in Radial Graph Layout

Retain Edge Orientation

Retain Neighbor Order

Indentation
Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams
Represent hierarchy by enclosure
Layering
Relative position and alignment

Focus + Context techniques for scale!

Summary: Tree Visualization

