CSE 442 - Data Visualization **Hierarchies**

Jeffrey Heer University of Washington

Graphs and Trees

Today: Visualizing Hierarchical Data **Next Time:** Visualizing Network Data

Goals

Overview of layout approaches Assess strengths and weaknesses Insight into implementation techniques

Graphs and Trees

Graphs Model relations among data *Nodes* and *edges*

Trees

Graphs with hierarchical structure Connected graph with N-1 edges Nodes as *parents* and *children*

Spatial Layout

A primary concern of tree/graph drawing is the spatial arrangement of nodes and edges.

Often (but not always) the goal is to effectively depict the graph structure:

- Connectivity, path-following
- Topological distance
- Clustering / grouping
- Ordering (e.g., hierarchy level)

Tree Visualization

Indentation

Linear list, indentation encodes depth

Node-Link diagrams Nodes connected by lines/curves

Enclosure diagrams Represent hierarchy by enclosure

Layering Relative position and alignment

Typically fast: O(n) or O(n log n), interactive layout

Interactive Layout Demo (requires Flash Player)

Tree Layout

Indentation

Places all items along vertically spaced rows Indentation used to show parent/child relationships Commonly used as a component in an interface Breadth and depth contend for space Often requires a great deal of scrolling

Single-Focus (Accordion) List

000		lectures			,
$\langle \rangle$		Ê			Q Search
Favorites Image: Macintosh HD Image:	CSE442-Assignments.txt web	a2-example a2-template.html a2.html bootstrap.js bootstrap.min.js data fonts.css fp-deliverables.html fp-peereval.html fp-proposal.html fp-prototype.html fp-showcase.html fp.html img index.html jquery.js lectures lodash.min.js resources.html style.css	CSE442-Anim CSE442-Colo CSE442-Dat CSE442-Dat CSE442-EDA CSE442-Inter CSE442-Maps CSE442-Maps CSE442-Perc CSE442-Perc CSE442-Perc CSE442-Proto CSE442-Proto CSE442-Spac CSE442-Tools CSE442-Value CSE442-Vis	nation mageModels fraction s ative reption otypes ce s eOfVisualization .codingDesign	CSE 442 - Data VisualizationData visualizationImage: Colspan="2">Image: Colspan="2" C
	📓 Macintosh HD 🕨 🔟 Users 🕨 🏠 jheer 🕨 🛅 Documents 🕨 🚞 Teaching 🕨 🚞 cse442 🕨 🚞 web 🕨 🛅 lectures 🕨 🔓 CSE442-Narrative				

Separate breadth & depth along 2D. Focus on a single path at a time.

Node-Link Diagrams

Nodes are distributed in space, connected by straight or curved lines

Typical approach is to use 2D space to break apart breadth and depth

Often space is used to communicate hierarchical orientation (e.g., towards authority or generality)

Naïve Recursive Layout

Repeatedly divide space for subtrees by leaf count

- Breadth of tree along one dimension
- Depth along the other dimension

Naïve Recursive Layout

Repeatedly divide space for subtrees by leaf count

- Breadth of tree along one dimension
- Depth along the other dimension

Problem: exponential growth of breadth

Reingold & Tilford's "Tidy" Layout

Goal: make smarter use of space, maximize density and symmetry. Originally binary trees, extended by Walker to cover general case. Corrected by Buchheim et al. to achieve a linear time algorithm.

Design Considerations Clearly encode depth level No edge crossings Isomorphic subtrees drawn identically Ordering and symmetry preserved *Compact layout (don't waste space)*

Initial bottom-up (post-order) traversal of the tree

- Y-coordinates based on tree depth
- X-coordinates set piecemeal via "shifts" at each depth

At each parent node: merge left and right subtrees Shift right subtree as close as possible to the left Computed efficiently by maintaining subtree contours "Shifts" in position saved for each node Parent nodes centered above children

Final top-down (pre-order) traversal to set X-coordinates Sum initial layout and aggregated shifts

8

8

Cluster Dendrograms

Depicts cluster trees produced by hierarchical clustering algorithms.

Leaf nodes arranged in a line, internal node depth indicates order/value at which clusters merge.

Naïve recursive layout with orthogonal twosegment edges.

Radial Tree Layout

Node-link diagram in polar co-ordinates. Radius encodes depth, with root in the center. Angular sectors assigned to subtrees (often with naïve recursive layout). **Reingold-Tilford method** can also be applied here.

Circular Tree Layout

Layout in 3D to form Cone Trees.

Balloon Trees can be described as a 2D variant of a Cone Tree. Not just a flattening process: circles must not overlap.

Focus + Context

Visualizing Large Hierarchies

Indented Layout

More Nodes, More Problems...

Scale

Tree breadth often grows exponentially Even with tidy layout, quickly run out of space

Possible Solutions

Filtering Focus+Context Scrolling or Panning Zooming Aggregation

Hyperbolic Layout

Perform tree layout in hyperbolic geometry, project the result on to the Euclidean plane.

Why? Like tree breadth, the hyperbolic plane expands exponentially!

Also computable in 3D, projected into a sphere.

Degree-of-Interest Trees

Space-constrained, multi-focal tree layout

Degree-of-Interest Trees

Remove "low interest" nodes at a given depth level until all blocks on a level fit within bounds. Attempt to center child blocks beneath parents. Enclosure

Enclosure Diagrams

Encode structure using **spatial enclosure** Popularly known as **treemaps**

Benefits

Provides a single view of an entire tree Easier to spot large/small nodes

Problems

Difficult to accurately read structure / depth

Circle Packing Layout

Nodes are represented as sized circles.

Nesting shows parentchild relationships.

Issues? Inefficient use of space. Parent size misleading?

Treemaps

Hierarchy visualization that emphasizes values of nodes via area encoding.

Partition 2D space such that leaf nodes have sizes proportional to data values.

First layout algorithms proposed by Shneiderman et al. in 1990, with focus on showing file sizes on a hard drive.

Slice & Dice layout: Alternate horizontal / vertical partitions.

Squarifed layout: Try to produce square (1:1) aspect ratios

Squarified Treemaps [Bruls et al. '00]

Slice & Dice layout suffers from extreme aspect ratios. How might we do better?

Squarified layout: greedy optimization for objective of square rectangles. Slice/dice within siblings; alternate whenever ratio worsens.

VS.

Interactive Example...

Why Squares? [Bruls et al. '00]

- Posited Benefits of 1:1 Aspect Ratios
- 1. Minimize perimeter, reducing border ink. *Mathematically true!*
- 2. Easier to select with a mouse cursor. Validated by empirical research & Fitt's Law!
- 3. Similar aspect ratios are easier to compare. Seems intuitive, but is this true?

Comparison Error vs. Aspect Ratio

Study by Kong, Heer & Agrawala, InfoVis '10. Comparison of squares has higher error! "Squarify" works because it fails to meet its objective?

Why Squares? [Bruls et al. '00]

- Posited Benefits of 1:1 Aspect Ratios
- 1. Minimize perimeter, reducing border ink. *Mathematically true!*
- 2. Easier to select with a mouse cursor. Validated by empirical research & Fitt's Law!
- 3. Similar aspect ratios are easier to compare. Seems intuitive, but is this true?

Why Squares? [Bruls et al. '00]

- Posited Benefits of 1:1 Aspect Ratios
- 1. Minimize perimeter, reducing border ink. *Mathematically true!*
- 2. Easier to select with a mouse cursor. Validated by empirical research & Fitt's Law!
- 3. Similar aspect ratios are easier to compare. Extreme ratios & squares-only more inaccurate. Balanced ratios better? Target golden ratio?

Treemaps vs. Bar Charts [Kong et al. '10]

Position is generally more effective than area, but... What happens when the element count gets high? What happens when comparing groups of elements, such as leaf values vs. internal node values?

Treemaps vs. Bar Charts [Kong et al. '10]

At low densities (< 4k elements), bar charts more accurate than treemaps for leaf-node comparisons. At higher density, treemaps led to faster judgments. Treemaps better for group-level comparisons.

Cushion Treemaps [van Wijk & Wetering '99]

Uses shading to emphasize hierarchal structure.

Cascaded Treemaps [Lü & Fogarty '08]

Uses 2.5D effect to emphasize hierarchy relations.

Voronoi Treemaps [Balzer et al. '05]

Instead of rectangles, create treemaps with arbitrary polygonal shapes and boundary.

Use iterative, weighted Voronoi tessellations to achieve cells with valueproportional areas.

Iterative Voronoi Tesselations [Jason Davies]
Layering

Layered Diagrams

Signify tree structure using:

- Layering
- Adjacency
- Alignment

Involves recursive sub-division of space.

Leaf nodes may be sized by value, parent size visualizes sum of descendant leaf values.

Icicle Trees: Cartesian Partition

"Sunburst" Trees: Polar Partition

Layered Trees Useful Elsewhere...

		Coffee			Espresso				
		Amaretto	Columbian	Decaf Irish Cr	Caffe Latte	Caffe Mocha	Decaf Espresso	Regular	Espre
Central	Colorado								
	Illinois								
	Iowa						1		
	Missouri		1	1		- I.	1		
	Ohio		1	1			1		
	Wisconsin		1			- I.	1		
East	Connecticut								
	Florida					1			
	Massachusetts					l			
	New Hamps		1			1		1	
	New York								
South	Louisiana		1				1		
	New Mexico		1	1			1		
	Oklahoma			l l					
	Texas								
West	California					1			
	Nevada						1		
	Oregon		1	l		1			
	Utah								
	Washington			1					
		-20K 0K 20K	-20K 0K 20K	-20K 0K 20K	-20K 0K 20K	-20K OK 20K	-20K 0K 20K	-20K 0k	< 20K
		SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(F	Profit)

Hybrids

Hybrids are also possible...

"Elastic Hierarchies" Node-link diagram with treemap nodes.

Little uptake for realworld use...

Administrivia

Final Project Deliverables

Interactive Web Page Working (near-final) version due Wed 5/31. Final version due by showcase on Mon 6/5.

Demonstration Video (<= 2 min) Due Wed 5/31. We will show in-class on 6/1!

Poster & Demo for Final Showcase Monday 6/5, 10:30am-1pm in Allen Center atrium. External judges will award top projects!

Read assignment description for more!

Final Project Showcase

When: Monday June 5, 10:30am - 1pm. **Where:** Allen Center Atrium

The event is open to the public. Invite your friends!

Public showing begins at 11am. Arrive at 10:30am to set up your poster and demo. Be prepared to give a ~3 min. presentation + demo to visitors.

Invited judges will rate & award the top projects.

Refreshments will be served!

Tips for a Successful Project

Focus on a compelling **real-world use**. Who is your user? How do you gauge success?

Consider **multiple design alternatives**. Prototype quickly (use Tableau, R, Gephi...).

Seek feedback (representative users, peers, ...). Even informal usage can provide insights.

Choose appropriate team roles.

Start early (and read the suggested paper!)

Animated Transitions in Tree Visualizations

Cone Trees [Robertson 91]

Polyarchies [Robertson 02]

Animate pivots across intersecting hierarchies.

Tested a number of animation parameters.

Best duration: ~1 sec

Rotational movement degraded performance, translation preferred.

Degree-of-Interest Trees [Heer 04]

Animation of expanding/collapsing branches

Space Tree [Grosjean 04]

Break animated transitions into discrete stages

Radial Graph Layout

Optimize animation to aid comprehension

http://people.ischool.berkeley.edu/~rachna/gtv/

Animation in Radial Graph Layout

Help maintain context of nodes and general orientation of user during refocus.

Transition Paths

Linear interpolation of polar coordinates Node moves in an arc, not straight lines Moves along circle if not changing levels When changing levels, spirals to next ring

Animation in Radial Graph Layout

Transition constraints

Minimize rotational travel (move former parent away from new focus in same orientation)

Avoid cross-over of edges

Retain Edge Orientation

Retain Neighbor Order

Summary: Tree Visualization

Indentation

Linear list, indentation encodes depth

Node-Link diagrams Nodes connected by lines/curves

Enclosure diagrams Represent hierarchy by enclosure

Layering Relative position and alignment

Focus + Context techniques for scale!

