Evaluation

Jeffrey Heer University of Washington
How do we determine if a visualization is effective?
Example: Tree Browsers
Evaluation Methods

Inspection or Principled Rationale
Apply design heuristics, perceptual principles

Informal User Study
Have people use visualization, observe results

Controlled Experiment
Choose appropriate tasks / users to compare
Choose metrics (time, error, what else?)
Evaluation Methods

Field Deployment or Case Studies
Observation and Interview
Document effects on work practices

Theoretical Analysis
Algorithm time and space complexity

Benchmarks
Performance (e.g., interactive frame rates)
Scalability to larger data sets
Topics

Focus+Context Methods (Trees, Spatial Navigation)
Data Density of Time Series
Perceptual Organization of Graphs
Contextual Effects on Visualization Use
Discussion and Course Evaluation
Trees
The Great Browse-Off! [CHI 97]

Microsoft File Explorer

VS.

Xerox PARC Hyperbolic Tree
Which visualization is better?
Which visualization is better?

Xerox PARC researchers ran eye-tracking studies to investigate... [Pirolli et al 00]
Which visualization is better?

Xerox PARC researchers ran eye-tracking studies to investigate... [Pirolli et al 00]

Subjects performed both retrieval and comparison tasks of varying complexity.
Which visualization is better?

Xerox PARC researchers ran eye-tracking studies to investigate... [Pirolli et al 00]

Subjects performed both retrieval and comparison tasks of varying complexity.

No significant performance differences were found across task conditions.
How do users navigate the tree?
How do users navigate the tree?
They read the labels!

Microsoft File Explorer

Xerox PARC Hyperbolic Tree
How do users navigate the tree?

Information Scent: A user’s (imperfect) perception of the value, cost, or access path of information sources obtained from proximal cues. [Pirolli & Card 99]
How do users navigate the tree?

Information Scent: A user’s (imperfect) perception of the value, cost, or access path of information sources obtained from proximal cues. [Pirolli & Card 99]

Operationalize as: the proportion of participants who correctly identified the location of the task answer from looking at upper branches in the tree.
Length of Eye Movements

- High: 9
- Low: 7
An Adaptive Field of View?
More Evaluations
Evaluation of DOI Trees

DOI Tree vs. Windows Explorer [Budiu, AVI 06]

- Nodes visited (avg) DOI: 83 Exp: 53 $p < .005$
- Revisitation (avg) DOI: 6.6 Exp: 8.2 $p < .005$
- Divergence (avg) DOI: 4.6 Exp: 3.9 $p < .001$

DOI Tree more forgiving to navigation errors

BUT no significant difference in task time

DOI Tree vs. Google Directory [Pirolli, CHI 06]

DOI Tree has superior task knowledge transfer
Design Guidelines
Design Guidelines

Support rapid visual scanning

Most people don't read in circles!

Degree of Interest Trees [Heer & Card 04]
Design Guidelines

People don’t read in circles!

Showing more is not always better

Distractors can decrease task performance

Interaction with quality of information scent
Design Guidelines

People don’t read in circles!
Showing more is not always better

Navigation cues critical to search

Informative labels or landmarks needed

Poor information scent undermines search
Lessons Learned

Both task and data properties (here, information scent) may interact with the visualization type in unexpected ways.

Equal performance in terms of accuracy or response time is not the whole picture. We often require more detailed study!
Spatial Navigation
An Evaluation of Pan & Zoom and Rubber Sheet Navigation with and without an Overview

Dmitry Nekrasovski, Adam Bodnar, Joanna McGrenere, François Guimbretière, Tamara Munzner
Pan & Zoom vs. Rubber Sheet

(i) PZN

(ii) RSN
Experimental Task

Compare topological distance between nodes in a dendrogram.
Experiment

Compare performance in 4 conditions:
1. Pan & Zoom (no overview)
2. Pan & Zoom (with overview)
3. Rubber Sheet (no overview)
4. Rubber Sheet (with overview)

40 subjects (24F/16M), between 18-39 years old. Right-handed, normal vision. Between-subjects design.
1. Rubber Sheet / No Overview
2. Pan & Zoom / No Overview
3. Rubber Sheet / Overview
4. Pan & Zoom / Overview
Hypotheses

1. RSN interfaces perform better than PZN interfaces independently of the presence or absence of an overview.
2. For RSN, the presence of an overview does not result in better performance.
3. For PZN, the presence of an overview results in better performance.
Results: H1 False

Figure 7: Mean completion times per trial for each interface by block in seconds (N=40).
Results: H2 True, H3 False

Figure 9: Block 7 mean per-trial completion times in seconds by navigation technique with and without an overview.
Results

R1. Pan & Zoom had lower completion times, navigation actions, resets, and reported mental demand.

R2. Overview has no significant impact on rubber sheet navigation, though it was reported to reduce physical demand.

R3. Overview has no significant impact on pan & zoom navigation, though it was reported to reduce physical demand.
Thoughts?

Does this generalize for overview displays?
Data Density
Data Density = \(\frac{\text{(\# entries in data)}}{\text{(area of graphic)}} \)

“Graphical excellence… gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space”

[Tufte 83]
Relative Technology Stock Performance: Jan 2008 - Present
Relative Technology Stock Performance: Jan 2008 - Present
Relative Technology Stock Performance: Jan 2008 - Present

- AMZN
- CSCO
- GOOG
- IBM
Relative Technology Stock Performance: Jan 2008 - Present

- AMZN
- CSCO
- GOOG
- IBM
Relative Technology Stock Performance: Jan 2008 - Present
Relative Technology Stock Performance: Jan 2008 - Present

AMZN

CSCO

GOOG

IBM

INTC

MSFT

NOK

ORCL

QCOM

YHOO
Relative Technology Stock Performance: Jan 2008 - Present
Relative Technology Stock Performance: Jan 2008 - Present
Relative Technology Stock Performance: Jan 2008 - Present

- AMZN
- CSCO
- GOOG
- IBM
- INTC
- MSFT
- NOK
- ORCL
- QCOM
- YHOO
Horizon Graphs

Segment Peaks

Layer Segments

Mirror Negative Values
Relative Technology Stock Performance: Jan 2008 - Present

AMZN

CSCO

GOOG

IBM

INTC

MSFT

NOK

ORCL

QCOM

YHOO
Relative Technology Stock Performance: Jan 2008 - Present
Experiment: Chart Type & Size

Q1: How do mirroring and layering affect estimation time and accuracy compared to line charts?

Q2: How does chart size affect estimation time and accuracy?
Estimate the difference between T and B (0-200) to within 5 values.
Experiment Design

3 (chart type) x 4 (size) within-subjects design

- N = 30 (17 male, 13 female), undergrads
- 14.1 inch LCD display, 1024 x 768 resolution
- At scale = 1, chart is 13.9 x 1.35 cm (48 px)
Experiment Design

3 (type) x 4 (size) within-subjects design
N = 30 (17 male, 13 female), undergrads

2 (type) x 3 (size: 1/8, 1/12, 1/24) follow-up
N = 8 (6 male, 2 female), engineering grads
Virtual Resolution (VR)

The un-mirrored, un-layered height of a chart

VR = \(h \)

VR = 2\(h' \) = \(h \)

VR = 4\(h'' \) = \(h \)
Experiment Results

Q1: 2-band horizon graph (but not mirrored graph) has higher baseline estimation time and error.

Q2: Estimation error increases as the virtual resolution decreases. Estimation time decreases as the physical height decreases.
Design Guidelines

Mirroring does not hamper perception
Design Guidelines

Mirroring does not hamper perception

Layered bands beneficial for smaller charts

2-band mirror charts more accurate for heights under 6.8mm (24 pixels @ 1024x768)

Predict benefits for 3 bands under 1.7mm (6 px)
Design Guidelines

Mirroring does not hamper perception
Layered bands beneficial for smaller charts

Optimal chart sizing

Sweet spots in time/error curves
- 6.8mm (24 px) for line chart & mirrored chart
- 3.4mm (12 px) for 2-band horizon graph
FOLLOW-UP QUESTION: What other tasks and performance measures should one test?
Perceptual Organization of Node-Link Diagrams
Perceptual Organization of Graphs

Circular

Force-Directed
Experiment Design

Factors
Circular or Force-Directed Seed Layout
of Between-Cluster Edges ("masking")
 All graphs had two primary clusters

Measures
of Edge Crossings
Average Edge Length
Average Node Distance
 within or between clusters
Circular

Force-Directed
Figure 4. Edge Crossings. Human observers produced graph layouts with fewer edge crossings than the force-directed graph algorithm.
Figure 5. Edge Length Distribution. Human observers did not focus on maintaining equal edge length as much as the force directed algorithm.
Figure 7. Cluster Extraction. For all levels of masking, the distance between nodes within a cluster is significantly smaller than the overall inter-node distance, demonstrating perceptual grouping. Error bars show 95% confidence intervals.
Figure 9. Cluster Hulls. Two examples of user-generated layouts where cluster edges formed a hull enclosing the cluster, organizing it into a single perceptual group.
Summary

Design and analyze visualization techniques in context of real-world use. Time/error analyses can be insightful, but they don’t provide a complete picture. Performance measures may be more suited to serious analysis than casual use?
Encoding

Data — Task

Users & Domain
Administrivia
Final Project Deliverables

Interactive Web Page

Demonstration Video (<= 2 min)
Due Wed 5/31. We will show in-class on 6/1!

Poster & Demo for Final Showcase
Monday 6/5, 10:30am-1pm in Allen Center atrium. External judges will award top projects!

Read assignment description for more!
Final Project Showcase

When: Monday June 5, 10:30am - 1pm.
Where: Allen Center Atrium

The event is open to the public. Invite your friends!

Public showing begins at 11am. Arrive at 10:30am to set up your poster and demo. Be prepared to give a ~3 min. presentation + demo to visitors.

Invited judges will rate & award the top projects.

Refreshments will be served!
Course Summary
Data and Image Models

Les Variables de l'Image

<table>
<thead>
<tr>
<th>XY 2 Dimensions du Plan</th>
<th>Points</th>
<th>Lignes</th>
<th>Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z Taille</th>
<th>Valeur</th>
<th>Les Variables de Séparation des Images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sémiologie Graphique [Bertin 67]
Visualization Design

SlicerDicers' Sales Compared to Other Products

Problematic design

Redesign

Sales of SlicerDicers Compared to Other Products
July - December, 2003
(SlicerDicers' sales are displayed as black reference lines of 100%, the red bars represent the average monthly sales percentages for July through December.)
Exploratory Data Analysis
Visualization Software

D3: Data-Driven Documents
Graphical Perception

The psychophysics of sensory function [Stevens 61]
CIE 1931 xy chromaticity diagram showing the gamut of the sRGB and Adobe RGB color spaces including the Planckian locus, with temperatures indicated. Wavelengths of monochromatic light are shown in blue.

Color Brewer
Animated transitions in statistical data graphics [Heer & Robertson 07]
Recent elections have placed a heavy emphasis on “swing states” — Ohio, Florida and the other competitive states. You can see how many states shifted between the Democratic and Republican parties. A look at how the states have shifted over past elections.

Obama Re-elected
The country voted about 5 percentage points more Republican in 2012 than in 2008. Obama lost North Carolina and Indiana, but won every tossup except Florida, which remains too close to call.

As Goes Ohio
Ohio, which has voted for the winner in every election since 1964, provided the decisive electoral votes in 2004, and it is the state likeliest to play that role again this year, according to the FiveThirtyEight model.
Hierarchies

Degree-Of-Interest Trees [Heer & Card 04]
Visualizations: Word tree / Alberto Gonzales

Creator: Martin Wattenberg
Tags:

Search: i don't

118 hits

The visualization shows a word tree with the words 'recall', 'i don't', 'want to', 'know', 'believe', and 'think' at the top. The visualization is interactive, allowing users to explore the relationships between the words.

Data source: CQ Transcript Wire via the Washington Post
Uncertainty
The Future of Visualization

Where is more work required?

What emerging technologies and societal trends will impact visualization design?

What did you find most difficult in creating visualizations and designing techniques?
Course Evaluation
Course Evaluation

Official campus course evaluation
Distributed and completed online.
Your opinion is valued!
https://uw.iasystem.org/survey/178414

Thanks for a great quarter!
Thank You!

I didn’t have anything useful to say so I made this pie chart.

Oooh!

It must be true because it’s pie.

Oooh!

That worked too well.

I pledge my life and my fortune to the pie!