## CSE 442 - Data Visualization

## Color



Jeffrey Heer University of Washington

## Color in Visualization

Identify, Group, Layer, Highlight


Colin Ware

## Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte


## Topics

Perception of Color
Light, Visual system, Mental models

Color in Information Visualization
Nominal, Ordinal \& Quantitative encoding
Guidelines for color palette design

## Perception of Color

## What color is this?

## What color is this?

## "Yellow"

## What color is this?

## What color is this?

"Blue"

## What color is this?

## What color is this?

"Teal" ?

## Perception of Color



## Physicist's View

Light as electromagnetic wave

Wavelength
Energy or
"Relative luminance"


A Field Guide to Digital Color, M. Stone

## Emissive vs. Reflective Light




Additive (digital displays)


Subtractive (print, e-paper)

## Perception of Color



## Retina



Simple Anatomy of the Retina, Helga Kolb

## As light enters our retina...

## LMS (Long, Middle, Short) Cones

Sensitive to different wavelength


A Field Guide to Digital Color, M. Stone

## As light enters our retina...

## LMS (Long, Middle, Short) Cones

Sensitive to different wavelength
Integration with input stimulus


## Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").
"Tri-stimulus"
Computer displays
Digital scanners
Digital cameras


## CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response.
"Standard observer" response curves

Stimulus


CIE Standard Observer


CIE XYZ
Integrate

$$
\begin{aligned}
& X=1 \\
& Y=1 \\
& Z=1
\end{aligned}
$$

## CIE Chromaticity Diagram

Colorfulness vs. Brightness

$$
\begin{aligned}
& x=X /(X+Y+Z) \\
& y=Y /(X+Y+Z)
\end{aligned}
$$



## CIE Chromaticity Diagram

## Spectrum locus

## Purple line

Mixture of two
lights appears as a straight line.


## CIE Chromaticity Diagram

## Spectrum locus

Purple line

Mixture of two
lights appears as a straight line.


## CIE Chromaticity Diagram

Spectrum locus

## Purple line

Mixture of two
lights appears as a straight line.


## CIE Chromaticity Diagram

Spectrum locus

Purple line

Mixture of two
lights appears as
a straight line.


## Display Gamuts

Typically defined by:
3 Colorants
Convex region


## Display Gamuts

Deviations from sRGB specification


## Color Blindness

Missing one or more cones or rods in retina.



Protanope


Deuteranope


Luminance


## Normal Retina

## Protanopia

## Color Blindness Simulators

Simulate color vision deficiencies Browser plug-ins (NoCoffee, SEE, ...) Photoshop plug-ins, etc...



Deuteranope


Protanope


## Perception of Color



## Primary Colors

To paint "all colors":
Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

Yellow<br>Blue<br>Green<br>Red

## Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast


Fairchild

## Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

## Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Experiments:
No reddish-green, no blueish-yellow
Color after images


## CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory.
Non-linear transformation of CIE XYZ


## CIE LAB Color Space

Axes correspond to opponent signals

$$
\begin{aligned}
& L^{*}=\text { Luminance } \\
& \text { a }^{*}=\text { Red-green contrast } \\
& \text { b* }^{*}=\text { Yellow-blue contrast }
\end{aligned}
$$

Much more perceptually uniform than sRGB!
Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

D3 includes LAB color space support!

## Perception of Color



## Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).


## Hue, Value and Chroma



## Munsell Color System

Perceptually-based
Precisely reference a color
Intuitive dimensions
Look-up table (LUT)


## Munsell Color System



## Perceptual Brightness

Color palette


## Perceptual Brightness

Color palette


HSL Lightness
(Photoshop)


## Perceptual Brightness

Color palette


Luminance $Y$
(CIE XYZ)


## Perceptual Brightness

Color palette


Munsell Value


## Perceptual Brightness

Color palette


Munsell Value
L* (CIE LAB)


## Perceptually-Uniform Color Space

## Munsell colors in CIE LAB coordinates



Mark Fairchild

## Perception of Color



## Color Appearance

If we had a perceptually-uniform color space, can we predict how we perceive colors?

## Simultaneous Contrast

The inner and outer thin rings are in fact the same physical purple.




## Simultaneous Contrast



Josef Albers

## Simultaneous Contrast



## Chromatic Adaptation



## Chromatic Adaptation



## Bezold Effect

Color appearance depends on adjacent colors


Color Appearance Tutorial by Maureen Stone

## Crispening

## Perceived difference depends on background



Color Appearance Models, Fairchild

## Spreading

## Spatial frequency

The paint chip problem
Small text, lines, glyphs Image colors

Adjacent colors blend


Foundations of Vision, Brian Wandell

## Color Appearance

If we had a perceptually-uniform color space, can we predict how we perceive colors?

Chromatic adaptation
Luminance adaptation
Simultaneous contrast
Spatial effects
Viewing angle

## iCAM

iCAM (2002) models:
Chromatic adaptation Appearance scales
Color difference
Crispening
Spreading
HDR tone mapping
(see also CIECAM02)

Mark Fairchild


## Perception of Color



## Colors according to XKCD...



## Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.


## Basic Color Terms

## Chance discovery by Brent Berlin and Paul Kay.



## Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969

- Surveyed speakers from 20 languages
- Literature from 69 languages


## World Color Survey



## World Color Survey



## World Color Survey



Naming information from 2616 speakers from 110 languages on 330 Munsell color chips


## Results from WCS

Language \#72 (Mixteco)
Mutual info $=0.942 /$ Contribution $=0.476$


Language \#99 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$


## Results from WCS

Language \#19 (Camsa)
Mutual info $=0.939 /$ Contribution $=0.487$


Language \#24 (Chavacano)
Mutual info $=0.939 ;$ Contribution $=0.513$


## Universal (?) Basic Color Terms

Basic color terms recur across languages.


White $\square$ Red


Pink
$\square$ Grey
Black


Green $\square$ Orange
$\square$ Blue
$\square$ Purple

## Evolution of Basic Color Terms

## Proposed universal evolution across languages.



## Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

500nm
600nm
700nm

## Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.


## Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.


## Naming Effects Color Perception

Color name boundaries

Green Blue

## Color Naming Models [Heer \& Stone '12]

Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?

Modeled by entropy of p(name | color)


## Icicle Tree with Rainbow Coloring



## Perception of Color



## Color Encodings

## Encoding Data with Color

Value is perceived as ordered
$\therefore$ Encode ordinal variables (O)

$\therefore$ Encode continuous variables $(Q)$ [not as well]


Hue is normally perceived as unordered
$\therefore$ Encode nominal variables ( N ) using color

$$
\square \square \square \square \square \square \square \square
$$

## Categorical Color

## Gray's Anatomy



Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

## Allocation of the Radio Spectrum


http://www.ntia.doc.gov/osmhome/allochrt.html


## Palette Design \& Color Names

## Minimize overlap and ambiguity of colors.

| Color Name Distance |  |  |  |  |  |  |  |  |  | Salience | Name <br> blue 62.9\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.20 | . 47 |  |
| 1.00 | 0.00 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 0.96 | 1.00 | . 90 | orange 93.9\% |
| 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.99 | . 67 | green 79.8\% |
| 1.00 | 0.97 | 1.00 | 0.00 | 1.00 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | . 66 | red 80.4\% |
| 0.98 | 1.00 | 1.00 | 1.00 | 0.00 | 0.96 | 0.91 | 0.97 | 1.00 | 0.99 | . 47 | purple 51.4\% |
| 1.00 | 1.00 | 1.00 | 0.95 | 0.96 | 0.00 | 0.97 | 0.93 | 0.98 | 1.00 | . 37 | brown 54.0\% |
| 1.00 | 1.00 | 1.00 | 0.99 | 0.91 | 0.97 | 0.00 | 1.00 | 1.00 | 1.00 | . 58 | pink $71.7 \%$ |
| 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.93 | 1.00 | 0.00 | 1.00 | 1.00 | . 67 | grey $79.4 \%$ |
| 1.00 | 0.96 | 0.90 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 0.00 | 1.00 | . 18 | yellow 31.2\% |
| 0.20 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | . 25 | blue 25.4\% |
| Tableau-10 |  |  |  |  |  |  |  | verage | 0.97 | . 52 |  |

## Palette Design \& Color Names

## Minimize overlap and ambiguity of colors.

Color Name Distance

| $\mathbf{0 . 0 0}$ | 1.00 | 1.00 | 0.89 | 0.07 | 1.00 | 0.35 | 0.99 | 1.00 | 0.89 | $\square$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{. 3 0}$ blue $50.5 \%$

Quantitative Color

## Rainbow Color Maps



## Be Wary of Rainbows!



1. People segment colors into classes
2. Hues are not naturally ordered
3. Different lightness emphasizes certain scalar values
4. Low luminance colors (blue) hide high frequencies

## Color Brewer: Palettes for Maps


how to use | updates | credits
COLORBREWER 2.0
color advice for cartography



## Classing Quantitative Data



Age-adjusted mortality rates for the United States.
Common option: break into 5 or 7 quantiles.

## Classing Quantitative Data

1. Equal interval (arithmetic progression)
2. Quantiles (recommended)
3. Standard deviations
4. Clustering (Jenks' natural breaks / 1D K-Means) Minimize within group variance Maximize between group variance

## Quantitative Color Encoding

Sequential color scale
Constrain hue, vary luminance/saturation
Map higher values to darker colors


## Quantitative Color Encoding

Sequential color scale
Constrain hue, vary luminance/saturation
Map higher values to darker colors


## Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints


## Quantitative Color Encoding

Sequential color scale
Constrain hue, vary luminance/saturation
Map higher values to darker colors


Diverging color scale
Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints


Limit number of steps in color to 3-9

## Designing Sequential Scales


http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

## Designing Sequential Scales

Hue-Lightness (Recommended)
Higher values mapped to darker colors
ColorBrewer schemes have 3-9 steps

Hue Transition
Two hues
Neighboring hues interpolate better
Couple with change in lightness

## Diverging Color Scheme



## Designing Diverging Scales


http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

## Designing Diverging Scales

Hue Transition
Carefully Handle Midpoint
Choose classes of values
Low, Average, High - Average should be gray
Critical Breakpoint
Defining value e.g., 0
Positive \& negative should use different hues
Extremes saturated, middle desaturated

## Hints for the Colorist

## Hints for the Colorist

Use only a few colors (~6 ideal)

## Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named

## Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named Strive for color harmony (natural colors?)

## Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named
Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism

## Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named
Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism Get it right in black and white

## Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named
Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism
Get it right in black and white
Respect the color blind

## Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named
Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism
Get it right in black and white
Respect the color blind
Take advantage of perceptual color spaces

