
D3.js Tutorial

Slides by Jane Hoffswell & Kanit "Ham" Wongsuphasawat
(Many thanks to them!)

Kaitlyn Zhou & Younghoon Kim

Resources

Tutorials:

● An older version of UW D3 tutorial: https://uwdata.github.io/d3-tutorials/
● Let’s Make a Bar Chart: https://bost.ocks.org/mike/bar/

References:

● JavaScript: The Good Parts:
http://bdcampbell.net/javascript/book/javascript_the_good_parts.pdf

● Interactive Visualization for the Web:
http://chimera.labs.oreilly.com/books/1230000000345/index.html

https://uwdata.github.io/d3-tutorials/
https://bost.ocks.org/mike/bar/
http://bdcampbell.net/javascript/book/javascript_the_good_parts.pdf
http://chimera.labs.oreilly.com/books/1230000000345/index.html

Follow Along!

https://uwdata.github.io/d3-tutorials/live/viewer.html

Download your own copy at:

https://github.com/uwdata/d3-tutorials/blob/gh-pages/live.zip

(Click “raw” to download)

https://uwdata.github.io/d3-tutorials/live/viewer.html
https://github.com/uwdata/d3-tutorials/blob/gh-pages/live.zip

Background

What is D3.js?

Data are bound to DOM elements to make Data-Driven Documents

What is D3.js?

DATA are bound to DOM elements to make Data-Driven Documents

What is D3.js?

Data are bound to DOM ELEMENTS to make Data-Driven Documents

What is D3.js?

Data are BOUND to DOM elements to make Data-Driven Documents

Example:
Titanic Passengers

Example

Example

Testing

Make a webpage

> python -m SimpleHTTPServer 8000

To test your web page, run the above command from the folder in which your
project is located. If your page has an index.html file, it will appear automatically.
Otherwise, add the desired html file to the end of the web address or navigate to it
in the browser.

Debugging CSS, HTML, and JavaScript

Use the JavaScript Console in your browser.

In the JavaScript console, you can view the
DOM including assigned properties and the
underlying style of elements. When you
select an element, you can change the
properties to prototype changes before
adding them to your program.

http://webmasters.stackexchange.com/questions/8525/how-to-open-the-javascript-console-in-different-browsers

Debugging CSS, HTML, and JavaScript

1. Getting Started
Link: https://uwdata.github.io/d3-tutorials/live/1-begin.html

https://uwdata.github.io/d3-tutorials/live/1-begin.html

index.html

We can start by defining a simple web page,
which has a header (h1) and an svg element that
will hold our visualization. In the style tags, we
can add CSS styling for both elements defined in
the HTML.

CSS Style

HTML

2. Adding Elements
Link: https://uwdata.github.io/d3-tutorials/live/2-svg.html

https://uwdata.github.io/d3-tutorials/live/2-svg.html

Manually specifying elements

We can manually add elements to the DOM, and
specify properties such as the x and y position,
and the title (which appears as a tooltip on
hover).

Elements can be added directly to the
<svg></svg> element, or to <g></g> svg groups.
They will inherit the properties of their parent
group (like location and orientation).

Positioning Elements

Keep in mind that the origin for positioning
elements is the upper left corner. (0,0)

(60,25)

(120,465)

3. Selections
Link: https://uwdata.github.io/d3-tutorials/live/3-selection.html

https://uwdata.github.io/d3-tutorials/live/3-selection.html

Selecting elements

d3.select() and d3.selectAll() can be used to
access DOM elements by name, class, id, or
many other css selectors. d3.select() selects only
the first element that matches the css selectors
while d3.selectAll() selects all matched
elements.

Modifying selected elements

You can use access and modify the properties of
selections with attr(), text(), style(), and other
operators. Most D3 selection methods return the
selection, allowing us to chain the operator calls.

Appending elements

Through append(), we can add new elements
anywhere in the DOM. We can then use
operators or CSS to set the properties of the
element.

We can also get rid of elements with remove().

Finally, we can store selections in variables for
future use.

D3 selections page extremely helpful!

https://github.com/mbostock/d3/wiki/Selections

4. Data Binding
Link: https://uwdata.github.io/d3-tutorials/live/4-binding.html

https://uwdata.github.io/d3-tutorials/live/4-binding.html

“Thinking with Joins” - Mike Bostock

Reference: https://bost.ocks.org/mike/join/

https://bost.ocks.org/mike/

Binding

We can use the data() function to bind data to a
selection.

We can also use data() or datum() to access the
data that belong to a selection.

selectAll().data().enter().append()

1. Select all of our circles (currently we don’t
have any).

2. Bind our data (in this case, 5 rows worth)
3. Enter each new datum from our selection.
4. Append a new DOM element. There are

now 5 new elements, each with their own
unique data.

5. Append titles to the new elements.
6. Merge our new elements into our original

selections.
7. Set attributes with operators, using

anonymous functions.

selectAll().data().enter().append()

1. Select all of our circles (currently we don’t
have any).

2. Bind our data (in this case, 5 rows worth)
3. Enter each new datum from our selection.
4. Append a new DOM element. There are

now 5 new elements, each with their own
unique data.

5. Append titles to the new elements.
6. Merge our new elements into our original

selections.
7. Set attributes with operators, using

anonymous functions.

1
2

3 4

5

6

7

5. Scales
Link: https://uwdata.github.io/d3-tutorials/live/5-scales1.html
Link: https://uwdata.github.io/d3-tutorials/live/6-scales2.html

https://uwdata.github.io/d3-tutorials/live/5-scales1.html
https://uwdata.github.io/d3-tutorials/live/6-scales2.html

Specifying scales

To position the dots, we can manually specify the
x and y position attributes, but this process can
be tedious and error prone for complex
attributes:

Specifying scales

Scales are functions that map from a domain to a
range(a domain of chart).

Anonymous functions can be used to
parameterize the element's attributes using the
element's data. Anonymous functions can have
two parameters d (our bound datum) and i (the
index of our datum). Using a scale:

Manual specification:

https://medium.com/@mbostock/introducing-d3-scale-61980c51545f

More scale types

d3.scaleLinear create a linear mapping. You can
also have d3.scaleLog, d3.scaleSqrt, and so on.
You can also specify ordinal (which include
nominal data types) and temporal scales. Note
that the range() does not have to be a set of
numbers; it can also be colors or strings.

Check the D3 Scales page for more information.

Note: d3.scaleLinear is new to D3v4 and
replaces d3.scale.linear. This is true for all of
these camelCase method names.

D3 also has built in scales for categorical colors:

d3.schemeCategory10()

#1f77b4 #ff7f0e #2ca02c #d62728 #9467bd
#8c564b #e377c2 #7f7f7f #bcbd22 #17becf

https://github.com/d3/d3-scale
https://github.com/mbostock/d3/wiki/Ordinal-Scales#categorical-colors

6. Axes & Legends
Link: https://uwdata.github.io/d3-tutorials/live/7-axes.html
Link: https://uwdata.github.io/d3-tutorials/live/8-legends.html

https://uwdata.github.io/d3-tutorials/live/7-axes.html
https://uwdata.github.io/d3-tutorials/live/8-legends.html

Creating axes

Axes can be generated based on the scales in
your visualization. Axes are defined based on
their position using d3.axisTop, d3.axisBottom,
d3.axisRight, or d3.axisLeft.

Note: each of these constructors is a function; to
create our axis, we create or select the element
where we want to place it, and then use call() to
apply the function to it. For more information on
call(), see this page.

See the D3 Axes page for more information.

Scale:

Specify axis:

Draw axis:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://github.com/d3/d3-axis

Labeling axes

Labels can be added to your visualization by
adding text marks. As with any other mark, you
can programmatically specify both HTML
attributes and CSS styles.

Legends

Legends can be constructed just like the other
elements of your visualization: by creating a new
set of marks and using scales to style the
attributes.

In addition to the rect for the legend mark, we
can append text to create the legend labels.

7. Events & Transitions
Link: https://uwdata.github.io/d3-tutorials/live/9-events.html
Link: https://uwdata.github.io/d3-tutorials/live/10-transitions.html

https://uwdata.github.io/d3-tutorials/live/9-events.html
https://uwdata.github.io/d3-tutorials/live/10-transitions.html

Reacting to events

Event listeners can be added to marks to react to
events on the underlying selection using the on()
method. The on() method takes the event name
and a callback function that is triggered every
time the specified event happens.

An anonymous function can be used as the
callback for the event listener. The input to the
function d represents the underlying data of the
mark. The scope, this, corresponds to the DOM
element.

8. Loading Files
Link: https://uwdata.github.io/d3-tutorials/live/11-csv.html

https://uwdata.github.io/d3-tutorials/live/11-csv.html

Loading data from external files

Data can be loaded from many types of external
files using commands such as d3.csv, d3.json,
d3.tsv.

The D3 functions additionally support callback
functions for dealing with the resulting data or
error cases.

Loading data from external files

What to do per row:
(Including creating aliases
or specifying data type.

Callback function

Error handling

What to do with all returned
rows (including sorting,
filtering, or

9. Enter/Update/Exit
Link: https://uwdata.github.io/d3-tutorials/live/12-exit.html

https://uwdata.github.io/d3-tutorials/live/12-exit.html

Rebinding

Three things can happen when we call data():

Update: We want to change the elements we
already have.

Enter: We have new data.

Exit: We have data that is no longer bound.

Rebinding

Good practice to have an update function.

1. Bind or rebind data
2. Perform update operations
3. Perform operations on enter set
4. Perform operations on update+enter sets
5. Perform exit operations

1. Update

Things I want to happen to all of our data,
whenever the function is called. Potentially
overwritten by later steps.

2. Enter

Things I want to happen to all new data

Can use append() to make new elements for
new data.

3. Enter+Update

Things I want to set initially. Can use transitions
to have attributes fade in after creation.

Note: In D3v4 you need to merge the enter set
into your update selection (scatter) to perform
updates on the enter and update set.

4. Exit

Things I want to happen to old data

Can use transitions to make old data fade away

Can use remove() to keep only elements that are
bound to our current data.

Key binding

With only one argument, binding will only keep
track of the amount of data we have.

If we always have the same amount of data, then
nothing will “exit.”

Can use a argument to specify unique identifiers
for data, to define whether data should enter or
exit.

Here, our key is the index (row number) of the
data in our original csv. Passenger name is not
unique, and so would not make a good key.

Conclusion

Check out https://bl.ocks.org/ for d3 snippets showing important concepts.

Check out the Resources page for additional tutorials and resources.

https://bl.ocks.org/
http://courses.cs.washington.edu/courses/cse512/16sp/resources.html

Feedback?

