CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

Lecture 11:
Tasks in Testing

James Fogarty
Eunice Jun
David Wang
Elisabeth Chin
Ravi Karkar

Tuesday / Thursday
10:30 to 11:50
In-Class Design, Prototype, Test

Design and prototype a touchscreen alarm clock to be deployed in a very high-end hotel brand. Your alarm clock should be immediately usable for tired, busy, or just-don’t-want-to-be-bothered travelers who will spend zero time learning your interface.

In addition to displaying the current time, your design should include basic functionality for:

- turning the alarm on/off
- setting the wake-up time
- anything else you think is appropriate

Guests will interact with the alarm via a touch panel.
Task Design is Important

The goal of a test is to figure out how a person interacts with an interface in the wild...

There are two possible explanations for why a test does not find significant problems:

- The interface does not have significant problems
- The test itself has significant problems
Task Design is Important

Testing is not entirely in the wild

As a part of focusing the test, you often need to give a person a somewhat artificial task

The artificiality of the task may influence how people interact with an interface...

...and thus may influence the outcomes and insights gained through user testing
Bad: Artificial Subgoals

People using the design “in the wild” may not necessarily form these same subgoals

The task should give one top-level goal, a people should form their subgoals while pursuing this

Now you want to choose the type of paper you want to print your document on. Lets imagine that Bin “B” has the paper you want to print your paper on, please complete this task.

Now set the darkness of your copies to about 50% dark. After setting the darkness, you decide you want to print 2 sides of copies on two sides of paper. Please complete this task.
Bad: Artificial Ordering

Without an artificial ordering of information or subgoals, people might not proceed in this order

The ordering might also be biased towards the layout of the interface, which would conceal any problems with finding the appropriate control

- Enter in 10 copies, with lightness set to 10%.
- Choose 1 sided to 2 sided, use paper source bin A.
- Cover sheet needed, using paper bin B for cover sheet.
- Set stapling feature on and collating on.
- Start printing.
Bad: Changing the Task

The task is to make copies, and this happens to involve entering information in the copier interface.

But this task description is an data entry task, “Here is some information. Put it in the interface.”

- Make 23 copies
- With collate
- Cover sheets
- Default darkness
- 1 Sided-> 1 Sided
You are a teacher and are trying to make 40 copies of a one-sided magazine article that is 10 pages long for your class tomorrow. Due to the large number of copies, you print the article double-sided, in other words 10 page article would be printed on 5 sheets of paper. Due to the high contrast of the article, you must lighten the copy, in other words change the contrast. You then want the copies to be collated and stapled.
Good: Giving Context

Giving realistic context through scenarios can reduce the artificiality of the task

It’s your first day in the office, starting a new job. You would like to make some copies of several documents that your boss gave you to browse through. Your colleague in the next cubicle tells you that you need an access code to make copies. The code is 5150. You walk over to the copy machine at the end of the hall and realize that it is not the Xerox copier that you are accustomed to... Make 2 copies of the “Company Annual Report”.
Consider: Under-Specified Tasks

Many realistic goals are under-specified, as people have only a general idea what they want.

By under-specified the task, you can elicit realistic confusion and decision-making.

You just finished fixing up the old hot rod in the garage and now it’s time to sell her. Make a couple copies of the pictures you took to send into the used car sales magazines. It’s ok that they’re in black and white but maybe you should lighten them up a bit. Your account billing code is 5150.
Task Design Summary

Task design is difficult and important

Poorly designed tasks mask interface failures

Have others help you “debug” them before testing
CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

Lecture 11: Tasks in Testing
James Fogarty
Eunice Jun
David Wang
Elisabeth Chin
Ravi Karkar

Tuesday / Thursday
10:30 to 11:50
CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

Lecture 13:
Inspection-Based Methods

James Fogarty
Eunice Jun
David Wang
Elisabeth Chin
Ravi Karkar

Tuesday / Thursday
10:30 to 11:50
Today

Project Status

Exam Discussion

Inspection-Based Methods

Time for Heuristic Evaluation of Paper Prototypes
Project Status

Looking Forward

3b: Heuristic Evaluation due Tomorrow Night
3c: Usability Testing Check-In due Thursday
 - Changes from Inspection
 - Changes from First Usability Test
3d: Usability Testing Review due Thursday 2/23

Other Assignments

Reading 4 will be Posted, Due Friday 2/24
(you should engage before that if you can)
Exam

In-Class
Next Tuesday 2/21

Mostly short answer, some long answer

Content drawn from lecture and readings

Will post a compilation of the lecture slides

Schedule a time for Q&A?
Inspection-Based Methods

We have cut prototyping to its minimum
 Sketches, storyboards, paper prototypes
 Rapid exploration of potential ideas

But we need evaluation to guide improvement
 Can become relatively slow and expensive
 Study participants can be scarce
 Can waste participants on obvious problems
Inspection-Based Methods

Simulate study participants

Instead of actual participants, use inspection to quickly and cheaply identify likely problems

Inspection methods are rational, not empirical

Today we cover two complementary methods

Heuristic Evaluation
Cognitive Walkthrough
Heuristic Evaluation

Developed by Jakob Nielsen

- Helps find usability problems in a design
- Not a method for “coming up with” a design

Small set of evaluators examine interface

- Three to five evaluators
- Independently check compliance with principles
- Different evaluators will find different problems
- Evaluators only communicate afterwards

Can perform on working interfaces or sketches
Nielsen’s 10 Heuristics

Too few unhelpful, too many overwhelming
“Be Good” versus thousands of detailed rules

Nielsen seeks to create a small set
Collects 249 usability problems
Collects 101 usability heuristics
Rates how well heuristics explain problems
Factor analysis to identify key heuristics

Nielsen, 1994
Nielsen’s 10 Heuristics

Visibility of system status
Match between system and the real world
User control and freedom
Consistency and standards
Error prevention
Recognition rather than recall
Flexibility and efficiency of use
Aesthetic and minimalist design
Help recognize, diagnose, and recover from errors
Help and documentation
1. Visibility

Visibility of system status

The system should always keep people informed about what is going on, through appropriate feedback within reasonable time.
1. Visibility

Visibility of system status

The system should always keep people informed about what is going on, through appropriate feedback within reasonable time.

Refers to both visibility of system status and providing appropriate feedback

Anytime a person is wondering what state the system is in, or the result of some action, this is a visibility violation.
2. Real World Match

Match between system and the real world

The system should speak a person’s language, with words, phrases and concepts familiar to the person, rather than system-oriented terms. Follow real-world conventions, making information appear in a natural and logical order.
2. Real World Match

Match between system and the real world

The system should **speak a person’s language**, with words, phrases and concepts familiar to the person, rather than **system-oriented terms**.

Follow real-world conventions, making information appear in a **natural and logical order**.

Refers to word and language choice, mental model, metaphor, mapping, and sequencing.
3. Control and Freedom

User control and freedom

People often choose system functions by mistake and will need a clearly marked “emergency exit” to leave the unwanted state without having to go through an extended dialogue.

Support undo and redo.
3. User in Control

User control and freedom

People often choose system functions by mistake and will need a clearly marked “emergency exit” to leave the unwanted state without having to go through an extended dialogue.

Support undo and redo.

Not just for navigation exits, but for getting out of any situation or state.
4. Consistency

Consistency and standards

People should not have to wonder whether different words, situations, or actions mean the same thing. Follow platform conventions.
4. Consistency

Consistency and standards

People should not have to wonder whether different words, situations, or actions mean the same thing. Follow platform conventions.

Internal consistency is consistency throughout the same product. External consistency is consistency with other products in its class.
5. Error Prevention

Error prevention

Even better than good error messages is a careful design which prevents a problem from occurring in the first place. Either eliminate error-prone conditions or check for them and present people with a confirmation option before they commit to the action.
5. Error Prevention

Error prevention

Even better than good error messages is a careful design which prevents a problem from occurring in the first place. Either eliminate error-prone conditions or check for them and present people with a confirmation option before they commit to the action.

Try to commit errors and see how they are handled. Could they have been prevented?
6. Recognition not Recall

Recognition rather than recall

Minimize a person’s memory load by making objects, actions, and options visible. A person should not have to remember information from one part of the dialogue to another. Instructions for use of the system should be visible or easily retrievable whenever appropriate.
6. Recognition not Recall

Recognition rather than recall

Minimize a person’s memory load by making objects, actions, and options visible. A person should not have to remember information from one part of the dialogue to another. Instructions for use of the system should be visible or easily retrievable whenever appropriate.

People should never carry a memory load
6. Recognition not Recall

Addresses visibility of features and information

where to find things

Visibility addresses system status and feedback

what is going on

Problems with affordances may go here

hidden affordance: remember where to act
false affordance: remember it is a fake
7. Flexibility and Efficiency

Flexibility and efficiency of use

Accelerators, while unseen by novices, may often speed up the interaction for experts such that the system can cater to both inexperienced and experienced use. Allow people to tailor frequent actions.
7. Flexibility and Efficiency

Flexibility and efficiency of use

Accelerators, while unseen by novices, may often speed up the interaction for experts such that the system can cater to both inexperienced and experienced use. Allow people to tailor frequent actions.

Concerns anywhere users have repetitive actions that must be done manually. Also concerns allowing multiple ways to do things.
8. Aesthetic Design

Aesthetic and minimalist design

Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information in a dialogue competes with the relevant units of information and diminishes their relative visibility.
8. Aesthetic Design

Aesthetic and minimalist design

Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information in a dialogue competes with the relevant units of information and diminishes their relative visibility.

Not just about “ugliness”. About clutter, overload of visual field, visual noise, distracting animations.
9. Error Recovery

Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely indicate the problem, and constructively suggest a solution.
9. Error Recovery

Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely indicate the problem, and constructively suggest a solution.

Error prevention is about preventing errors before they occur. This is about after they occur.
10. Help

Help and documentation

Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such information should be easy to search, focused on a person’s task, list concrete steps to be carried out, and not be too large.
10. Help

Help and documentation

Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such information should be easy to search, focused on a person’s task, list concrete steps to be carried out, and not be too large.

This does not mean that a person must be able to ask for help on every single item.
Heuristic Evaluation Process

Evaluators go through interface several times
 Inspect various dialogue elements
 Compare with list of usability principles

Usability principles
 Nielsen’s “heuristics”
 Supplementary list of category-specific heuristics
 (competitive analysis or testing existing products)

Use violations to redesign/fix problems
Examples

Can’t copy info from one window to another
 violates “Minimize memory load” (H6)
 fix: allow copying

Typography uses different fonts in 3 dialog boxes
 violates “Consistency and standards” (H4)
 slows users down
 probably wouldn’t be found by usability testing
 fix: pick a single format for entire interface
Heuristics
Heuristics
Heuristics

Time Left: 00:00:19 Searching database for matches

46%
Visibility of system status

- **pay attention to response time**
 - 0.1 sec: no special indicators needed *(why?)*
 - 1.0 sec: user tends to lose track of data
 - 10 sec: maximum duration if user to stay focused on action
- Longer delays require percent-done progress bars
Heuristics
Heuristics

Mac desktop

Dragging disk to trash should delete, not eject it

Match system to real world

Speak the person's language

Follow conventions
Heuristics

.mailto is not a registered protocol.
Heuristics

“Mailto”, “protocol”?

Match system to real world
Speak the person’s language
Heuristics
Heuristics

Flexibility and Efficiency of Use
accelerators for experts (e.g., keyboard shortcuts) allow tailoring of frequent actions (e.g., macros)
Heuristics

![Error dialog box with message: You have not specified a Web Browser, or Web Browser specified is incorrect!]

Yes
Heuristics

Help recognize, diagnose, & recover from errors

error messages in plain language
precisely indicate the problem
constructively suggest a solution
Heuristics

Adobe Illustrator

You are saving this document in Adobe Illustrator 9.0 format. Saving this document in an older format may disable some editing features when the document is read back in.

[Yes] [No]
Heuristics

User Control and Freedom
Prevent Errors
Heuristics

The Radiation Dosimetry Program

<table>
<thead>
<tr>
<th>Please Enter Desired Dose (in Rems)</th>
<th>0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Substance</td>
<td>Polonium</td>
</tr>
<tr>
<td>Isotope Number</td>
<td>211</td>
</tr>
</tbody>
</table>
Heuristics

<table>
<thead>
<tr>
<th>The Radiation Dosimetry Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Please Enter Desired Dose (in Rems)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Enter Substance</td>
<td>Polonium</td>
</tr>
<tr>
<td>Isotope Number</td>
<td>211</td>
</tr>
</tbody>
</table>

Prevent Errors
Heuristics

Caution: Changing your RAID configuration will erase all its data in the drive (J:), are you sure?

If you wish to continue, enter the confirmation number "029732" below and click Yes.

Confirmation Number: 029732

Yes No
Heuristics

Prevent Errors

Caution: Changing your RAID configuration will erase all its data in the drive (J:), are you sure?

If you wish to continue, enter the confirmation number "029732" below and click Yes.

Confirmation Number: 029732

Yes No
Heuristics
Heuristics

User control & freedom

provide “exits” for mistaken choices, undo, redo
don’t force down fixed paths

Wizards

must respond to question before going to next
good for beginners, infrequent tasks
not for common tasks
consider having 2 versions (WinZip)
Heuristics
Heuristics

Consistency & Standards
Heuristics

% rm cse440*
%

![Confirm Multiple File Delete dialog box](attachment:image.png)
Heuristics

% rm cse440*
%

Error prevention
Recognition rather than recall
Visibility
Heuristics

<table>
<thead>
<tr>
<th>Form Title -- (appears above URL in most browsers and is used by WWW search)</th>
<th>Background Color:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q&D Software Development Order Desk</td>
<td>FFFBF0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form Heading -- (appears at top of Web page in bold type)</th>
<th>Text Color:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q&D Software Development Order Desk</td>
<td>000080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Mail responses to (will not appear on)</th>
<th>Alternate (for mailto forms only)</th>
<th>Background Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>dversch@q-d.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text to appear in Submit button</th>
<th>Text to appear in Reset button</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Order</td>
<td>Clear Form</td>
<td></td>
</tr>
</tbody>
</table>

Scrolling Status Bar Message (max length = 200 characters)

WebMania 1.5b with Image Map Wizard is here!!
Heuristics

Aesthetic & Minimalist design

no irrelevant information in dialogues
Heuristics

Select an award style using the scroll bar. When you've found a style that suits you, press OKAY to create that award and open the editor.
Heuristics
Heuristics
Phases of Heuristic Evaluation

1) Pre-evaluation training
 give expert evaluators needed domain knowledge & information on the scenario

2) Evaluation
 individuals evaluate interface and make lists of problems

3) Severity rating
 determine how severe each problem is

4) Aggregation
 group meets and aggregates problems (w/ ratings)

5) Debriefing
 discuss the outcome with design team
How to Perform Evaluation

At least two passes for each evaluator
- first to get feel for flow and scope of system
- second to focus on specific elements

If system is walk-up-and-use or evaluators are domain experts, no assistance needed
- otherwise might supply evaluators with scenarios

Each evaluator produces list of problems
- explain why with reference to heuristic
- be specific & list each problem separately
Example Heuristic Violation

1. [H4 Consistency]

The interface used the string "Save" on the first screen for saving the person’s file, but used the string "Write file" on the second screen. People may be confused by this different terminology for the same function.
How to Perform Heuristic Evaluation

Why separate listings for each violation?
- risk of repeating problematic aspect
- may not be possible to fix all problems

Where problems may be found
- single location in interface
- two or more locations that need to be compared
- problem with overall structure of interface
- something that is missing
- common problem with paper prototypes

(sometimes features are implied by design documents and just haven’t been “implemented” – relax on those)
Severity Rating

Used to allocate resources to fix problems
Estimates of need for more usability efforts
Combination of
- frequency
- impact
- persistence (one time or repeating)
Should be calculated after all evaluations are in
Should be done independently by all judges
Severity Rating

0 - Do not agree this is a problem.

1 - Usability blemish.
 Mild annoyance or cosmetic problem. Easily avoidable.

2 - Minor usability problem.
 Annoying, misleading, unclear, confusing.
 Can be avoided or easily learned. May occur only once.

3 - Major usability problem.
 Prevents people from completing tasks. Highly confusing or unclear.
 Difficult to avoid. Likely to occur more than once.

4 - Critical usability problem.
 People will not be able to accomplish their goals.
 People may quit using system all together.
Example Heuristic Violation

1. [H4 Consistency] [Severity 3]

The interface used the string "Save" on the first screen for saving the person’s file, but used the string "Write file" on the second screen. People may be confused by this different terminology for the same function.
Why Multiple Evaluators?

Every evaluator does not find every problem

Good evaluators find both easy & hard ones
Debriefing

Conduct with evaluators, observers, and development team members
Discuss general characteristics of interface
Suggest potential improvements to address major usability problems
Development team rates how hard to fix
Make it a brainstorming session
Fixability Scores

1 - Nearly impossible to fix. Requires massive re-engineering or use of new technology. Solution not known or understood at all.

2 - Difficult to fix. Redesign and re-engineering required. Significant code changes. Solution identifiable but details not fully understood.

3 - Easy to fix. Minimal redesign and straightforward code changes. Solution known and understood.

4 - Trivial to fix. Textual changes and cosmetic changes. Minor code tweaking.
Example Heuristic Violation

1. [H4 Consistency] [Severity 3] [Fix 4]

The interface used the string "Save" on the first screen for saving the person’s file, but used the string "Write file" on the second screen. People may be confused by this different terminology for the same function.

Fix: Change second screen to "Save".
Results of Using HE

Discount: benefit-cost ratio of 48

cost was $10,500 for benefit of $500,000
how might we calculate this value?
in-house \rightarrow productivity; open market \rightarrow sales

Single evaluator achieves poor results
only finds 35% of usability problems
5 evaluators find \sim 75% of usability problems
why not more evaluators?

Nielsen, 1994
Decreasing Returns

problems found

benefits / cost

Nielsen, 1994
Alternative Inspection-Based Methods

Cognitive Walkthrough

- Surfaces different types of usability problems
- Consider as a complement to heuristic evaluation

Action Analysis

- Low-level modeling of expert performance
- Be aware of GOMS, but may never encounter it
Cognitive Walkthrough

Evaluation method based on:

- A person works through an interface in an exploratory manner
- A person has goals
- The person is applying means-ends reasoning to work out how to accomplish these goals

Evaluation by an expert, who goes through a task while simulating this cognitive process
Preparation: Need Four Things

1) Person description, including level of experience and any assumptions made by the designer
2) System description (e.g., paper prototype)
3) Task description, specifying the task the expert has to carry out, from a person’s point of view
4) Action sequence describing the system display and the actions needed to complete the task. One system display and one action together are one step.
Cognitive Walkthrough Process

Designer/Developer prepares the required documents described on previous slide

Gives these documents to the usability expert

Expert reads the descriptions, and carries out the task by following the action list

At each step in action list, asks four questions

Record problems similar to heuristic evaluation
Believability

1) Will the person be trying to produce whatever effect the action has?

2) Will the person be able to notice that the correct action is available?

3) Once the person finds the correct action at the interface, will they know that it is the right one for the effect they are trying to produce?

4) After the action is taken, will the person understand the feedback given?
Action Analysis / Cognitive Modeling

GOMS: Goals, Operators, Methods, Selection
Developed by Card, Moran and Newell

Walk through sequence of steps
Assign each an approximate time duration
Sum to estimate overall performance time

1. Select sentence
 - Reach for mouse H 0.40
 - Point to first word P 1.10
 - Click button down K 0.60
 - Drag to last word P 1.20
 - Release K 0.60

 3.90 secs
Inspection vs. Usability Testing

Inspection is
- Is much faster
- Does not require interpreting participant actions
- May miss problems or find false positives

Usability testing is
- More accurate, by definition
- Account for actual people and tasks

One approach is to alternate between them
- Find different problems, conserve participants
CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

Lecture 13: Inspection-Based Methods

James Fogarty
Eunice Jun
David Wang
Elisabeth Chin
Ravi Karkar

Tuesday / Thursday
10:30 to 11:50