Maya Cakmak, Matt Kay, Brad Jacobson, King Xia

PAPER PROTOTYPING

human-computer interaction CSE 440 WINTER 2015

FEB 03 - WEEK 5 - TUESDAY

Jan 26	Jan 27	Jan 28	Jan 29	Jan 30
WEEK 4 Maya Office Hour 1:30 - 2:30 CSE 542	Design principles 10:30 - 11:50 EEB 045 2e - Task Review		Human Performance 10:30 - 11:50 EEB 045	Sections 10:30 - 11:20 MGH 287 1:30 - 2:20 MGH 254
eb 2	Feb 3	Feb 4	Feb 5	2f - Design Check-in Feb 6
Reading1: Research Paper Maya Office Hour 1:30 - 2:30 CSE 542	Paper prototyping 10:30 - 11:50 EEB 045 2g - Getting the Right Design Report		Presentations 10:30 - 11:50 EEB 045	Presentations 10:30 - 11:20 MGH 287 1:30 - 2:20 MGH 254

HCI @ Superbowl

Jan 26	Jan 27	Jan 28	Jan 29	Jan 30
WEEK 4 Maya Office Hour 1:30 - 2:30 CSE 542	Design principles 10:30 - 11:50 EEB 045 2e - Task Review		Human Performance 10:30 - 11:50 EEB 045	Sections 10:30 - 11:20 MGH 287 1:30 - 2:20 MGH 254
eb 2	Feb 3	Feb 4	Feb 5	Feb 6
Reading1: Research Paper Maya Office Hour 1:30 - 2:30 CSE 542	Paper prototyping 10:30 - 11:50 EEB 045 2g - Getting the Right Design Report		Presentations 10:30 - 11:50 EEB 045	Presentations 10:30 - 11:20 MGH 287 1:30 - 2:20 MGH 254

Phew...

getting the right design

getting the design right

Phew...

getting the right design

getting the design right

Phew...

getting the right design

getting the design right

Today

- Recap human abilities [20min] -Cover Fitt's Law
- Paper prototyping [55min]
 - -Description and guidelines [25min]
 - -Exercise [30min]

HUMAN ABILITIES

...and their implications for design

Human abilities

- Humans:
 - -Perception
 - •Color
 - Patterns (Gestalt principles)
 - -Memory
 - -Motor
 - Movement speed/precision (Fitt's law)

Every artifact is the way it is because of human morphology or physiology.

Color sensitivity

not as sensitive to blue!

Wavelength

Color sensitivity

- Not distributed evenly -mainly reds (64%) & very few blues (4%)
- No blue cones in retina center -"disappearance" of small blue objects you fixate on

Color sensitivity

- Not distributed evenly -mainly reds (64%) & very few blues (4%)
- No blue cones in retina center -''disappearance'' of small blue objects you fixate on

Design implication:

Washington

don't rely on blue for text or small objects

Focus

• Different wavelengths of light focused at different distances behind eye's lens

-need for constant refocusing causes fatigue

• Pure (saturated) colors require more focusing then less pure (desaturated)

Focus

• Different wavelengths of light focused at different distances behind eye's lens

-need for constant refocusing causes fatigue

• Pure (saturated) colors require more focusing then less pure (desaturated)

Design implication:

be careful about color <u>combinations</u>

don't use <u>saturated colors</u> in UIs unless you really need something to stand out (stop sign)

University of Washington

The Falklands Society

 Inherent meaning or feeling associated with colors –companies exploit it

• The color wheel

Color harmony

©Jill Morton - Color Matters

Attention/saliency

Attention/saliency

Patterns

Washington

Gestalt principles - proximity

Elements that are **closer together are perceived to be more related** than elements that are farther apart.

Gestalt principles - similarity

Elements are **similar are perceived to be more related** than elements that are dissimilar.

Gestalt principles - good continuation

Elements arranged in a **straight line or a smooth curve** are perceived as a group and are interpreted as being more related than elements not on the line or curve.

Gestalt principles - closure

A tendency to perceive a set of individual elements as a single, recognizable pattern, rather than multiple, individual elements.

Memory

• Working memory (short term) -small capacity (7 \pm 2 ''chunks'')

Access time

Paper Home Back Schedule Page Change Yellow White Black Blue Red Green

Memory

Recall

reproduce information from memory Recognition

discriminate among provided info

Human motor movements

• Task:

-Quickly tap each target 50 times accurately

- Conditions:
 - -Two 1/2" diameter targets 6" apart
 - -Two 1/2" diameter targets 24" apart
 - -Two 2'' diameter targets 24'' apart
 - -Two 2'' diameter targets 24'' apart (no accuracy required)

Human motor movements

- To move the hand/mouse to target size S which is distance D away is given by:
 - $-T = a + b \log_2 (D/S + 1)$
- D/S: relative precision

Which one is faster on average?

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Pop-up Linear Menu

Which one is faster on average?

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Pop-up Linear Menu

Pop-up Pie Menu

bigger targets & less distance

Pop up pie menu

Human versus Robot Factors

Human versus Robot Factors

Human limitations

University of Washington

- We perceive what we expect
- Our Vision is Optimized to See Structure
- We Seek and Use Visual Structure
- Reading is Unnatural
- Our Color Vision is Limited
- Our Peripheral Vision is Poor
- Our Attention is Limited; Our Memory is Imperfect
- Limits on Attention, Shape, Thought and Action
- Recognition is Easy; Recall is Hard
- Learning from Experience and Performing Learned Actions are Easy; Problem Solving and Calculation are Hard
- Many Factors Affect Learning
- We Have Time Requirements

PAPER PROTOTYPING

Paper prototyping

- Back to kindergarden
 - -Arts and craft
 - -Make believe

PAPER PROTOTYPING

THE FAST AND EASY WAY TO DESIGN

AND REFINE USER INTERFACES

CAROLYN SNYDER

Time

Prototype fidelity

Example I

Example 2

Example 2

1) Personal - 2) Address - 3) Account Account Type: Username: Username: Mate: Your accounts only Mate: Your accounts	Trading \rightarrow (5) Agreement \rightarrow (6) Finish O Acconv Type Mining Advance Acconv Bosic Acconv

What to use?

- Paper: Large, heavy, white
- Index cards
- Post-its
- Tape, stick glue, correction tape
- Pens & markers (many colors & sizes)
- Overhead transparencies
- Scissors, X-Acto knives, etc.

What to make?

scroll menus

text fields

error messages

cursors

buttons

drop down menus

University of Washington

dub

• Photocopy repeated items

- Photocopy repeated items
- 3D sketching for buttons

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text
- Folding (hide/expand)

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text
- Folding (hide/expand)
- Verbal help menu/tool tip

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text
- Folding (hide/expand)
- Verbal help menu/tool tip
- Use sounds (beep)

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text
- Folding (hide/expand)
- Verbal help menu/tool tip
- Use sounds (beep)
- User real images

Washington

University of

Washington

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text
- Folding (hide/expand)
- Verbal help menu/tool tip
- Use sounds (beep)
- User real images
- Use familiar OS icons

University of

Washington

- Photocopy repeated items
- 3D sketching for buttons
- Use physical props (stick a paper on your smart phone)
- Use real size templates
- Scroll using a frame
- Transparencies for adding text
- Folding (hide/expand)
- Verbal help menu/tool tip
- Use sounds (beep)
- User real images
- Use familiar OS icons

Invent your own tricks!

Example: Physical prop

Example: Scrolling, use of real imagery

Time limit

• Important! Just as in storyboards

Testing a prototype

- Prepare test scenarios
- Practice
- Lay out or order pieces

University of Washington

Problems with lo-fi prototypes

Problems with lo-fi prototypes

- "Computer" is inherently buggy
- Slow compared to real app —timings not accurate
- Hard to implement some functionality –pulldowns, feedback, drag, visualizations
- Won't look like final product -sometimes hard to recognize widgets
- End-users can't use by themselves __not in their actual context of use

Washington

Exercise

- Build a paper prototype for an alarm clock
- Support the following tasks:
 - -Setting the clock time
 - -Setting up an alarm
 - -Snoozing (when the alarm goes off)
 - -Turning the alarm off

