Early Stage Prototyping

Prof. James A. Landay
University of Washington
CSE 440
February 14, 2013

Hall of Fame or Shame?

Direct translations
- software telephony solution where users dial a number by clicking on a simulated keypad
- airline web site that simulates a ticket counter

Misused Metaphors!

Hall of Shame!

The main thing that differentiated the product (movement in gaming) resulted in it being thrown at windows
- Slippery plastic hard to hold onto. Later designs added rubber case & strap
- Lack of a joystick was initial problem resulting in a second controller

Hall of Shame!

Starbucks/Olleh WiFi
- Broken form – mouse didn’t work
- Require my personal information (passport #)
- Fail on verify!
- Bad experience!
Outline

- Conceptual Models & Interface Metaphors Review
- Types of Prototypes
- Low-fi prototyping
- Wizard of Oz technique

Conceptual Models Review

- Conceptual models:
 - mental representation of how the object works & how interface controls effect it
- Design model should equal customer’s model:
 - mismatches lead to errors
 - use customer’s likely conceptual model to design
- Design guides:
 - make things visible
 - map interface controls to customer’s model
 - provide feedback

Design Process: Exploration

Expand Design Space
- Brainstorming
- Sketching
- Storyboarding
- Prototyping

What is a Prototype?

“A prototype is an early sample or model built to test a concept or process or to act as a thing to be replicated or learned from.” – Wikipedia

Types of Prototypes

Prototypes are concrete representations of a design

Prototype dimensions
- representation: form of the prototype
 - off-line (paper) or on-line (software)
- precision: level of detail (e.g., informal or polished)

- Low-fi prototyping
- Wizard of Oz technique
Types of Prototypes

Prototypes are concrete representations of a design.

Prototype dimensions
- representation: form of the prototype
 - off-line (paper) or on-line (software)
- precision: level of detail (e.g., informal or polished)
- interactivity: watch-only vs. fully interactive
 - fixed prototype (video clips)
 - fixed-path prototype (each step triggered by specified actions)
 - open prototype (real, but limited error handling or performance)
- evolution: expected life cycle of prototype
 - e.g., throw away or iterative

Fidelity in Prototyping

- Fidelity refers to the level of detail
- High fidelity?
 - prototypes look like the final product
- Low fidelity?
 - artists renditions with many details missing

Hi-fi Prototypes Warp

- Perceptions of the tester/reviewer
 - representation communicates “finished”
 - comments focus on color, fonts, & alignment
- Time
 - encourage precision
 - specifying details takes more time
- Creativity
 - lose track of the big picture

Why Use Low-fi Prototypes?

- Traditional methods take too long
 - sketches → prototype → evaluate → iterate
- Can instead simulate the prototype
 - sketches → evaluate → iterate
 - sketches act as prototypes
 - designer “plays computer”; others observe & record
- Kindergarten implementation skills
 - allows non-programmers to participate

The Basic Materials

- Large, heavy, white paper (A3 or 11x17)
- 5x8 in./A5/A6 index cards
- Tape, stick glue, correction tape
- Pens & markers (many colors & sizes)
- Post-its
- Overhead transparencies
- Scissors
- X-acto knives, etc.
Constructing the Model

- Set a deadline
 - Don’t think too long - build it!
- Draw a window frame on large paper
- Put different screen regions on cards
 - anything that moves, changes, appears/disappears
- Ready response for any user action
 - e.g., have those pull-down menus already made
- Use photocopier to make many versions
Preparing for a Test

• Select your “customers”
 – understand background of intended users
 – use a questionnaire to get the people you need
 – don’t use friends or family
 • I think existing “customers” are OK (Rettig disagrees)

• Prepare scenarios that are
 – typical of the product during actual use
 – make prototype support these (small, yet broad)

• Practice to avoid “bugs”

Conducting a Test

• Four roles
 – greeter – puts users at ease & gets data
 – facilitator – only team member who speaks
 • gives instructions & encourages thoughts, opinions
 – computer – knows application logic & controls it
 • always simulates the response, w/o explanation
 – observers – take notes & recommendations

• Typical session is 1 hour
 – preparation, the test, debriefing

• Read the Gommol paper (1 page) for details on conducting a test
Conducting a Test

Evaluating Results
- Sort & prioritize observations
 - what was important?
 - lots of problems in the same area?
- Create a written report on findings
 - gives agenda for meeting on design changes
- Make changes & iterate

Advantages of Low-fi Prototyping
- Takes only a few hours
 - no expensive equipment needed
- Can test multiple alternatives
 - fast iterations
 - number of iterations is tied to final quality
- Almost all interaction can be faked

Wizard of Oz Technique
- Faking the interaction. Comes from?
 - the film "The Wizard of OZ"
 - "the man behind the curtain"
 - Long tradition in computer industry
 - e.g., prototype of a PC w/ a DEC VAX behind the curtain
 - Much more important for hard to implement features
 - speech & handwriting recognition

Problems with Low-fi Prototypes
- "Computer" inherently buggy
- Slow compared to real app
 - timings not accurate
- Hard to implement some functionality
 - pulldowns, feedback, drag, viz...
- Won’t look like final product
 - sometimes hard to recognize widgets
- End-users can’t use by themselves
 - not in context of user’s work environment
Summary

• Prototypes are a concrete representation of a design or final product

• Low-fi testing allows us to quickly iterate
 – get feedback from users & change right away

Further Reading

Prototyping

• Books
 – Paper Prototyping: The Fast and Easy Way to Design and Refine User Interfaces, by Carolyn Snyder, Morgan Kaufmann, 2003

• Articles

• Web Sites

Next Time

• Heuristic Evaluation
• Reading
 – Lewis & Rieman 4.3-4.4
 – Nielsen HE chapter (read 5 links under “Heuristic Evaluation”)