

Hall of Fame or Shame?

User Interface Design, Prototyping, and Evaluation

Human Abilities: Vision & Cognition

Prof. James A. Landay University of Washington Autumn 2008

October 21, 2008

Hall of Shame!

Add/Update Shi	pping Information	Desig
	We found an error while verifying your shipping address. We've marked the problem in red for you	top re
		In stu
Update the address be Required information CHU for questions al	is marked in GREEN CAPS.	not g
NICKNAME:	MYSELF Diverse exigns a balancese' for the person you're dolpping to. You your change or dollet this information at our time.	scree
FIRST NAME: LAST NAME:	DOUGLAS MEDDLE INITIAL:	Color
ADDRESS:	245 SAN JOSE RD	– can
спту:	(boandina) we mly)	bet
STATE/PROVINCE:	California	How
ZIP/POSTAL CODE:	95333	
COUNTRY:	Select a country	– red
SHIPPING METHOD:	In the U.S.: CEB International: CEB (* Standard UPS C Canada Canada Post	

Design based on a op retailer's site n study, user could not get by this screen, why? Color deficiency

- can't distinguish
 between red & green
- How to fix?
 - redundant cues

Outline

- Review
- Human visual system
- Guidelines for design
- Models of human performance (MHP)
- Memory

Video Prototype Review

- Prototype dimensions
- representation, precision, interactivity, evolution
 Video prototypes illustrate how customers
- will interact w/ system – quick to build, inexpensive, shows context of use
- How to create a video prototype – create use scenario in words
 - develop storyboard of each action/event w/ annotations explaining what is happening in scene. Put each element on a card.
 - shoot a video clip for each storyboard card
 - use title cards to separate clips

Why Study Color?

- 1) Color can be a powerful tool to *improve* user interfaces by communicating key information
- 2) Inappropriate use of color can severely *reduce the performance* of systems we build

Visible Spectrum

Human Visual System

- Light passes through lens
- Focussed on retina

Retina

- Retina covered with light-sensitive receptors,
 - rods
 - primarily for night vision & perceiving movement
 - sensitive to broad spectrum of light
 - can't discriminate between colors
 - sense intensity or shades of gray
 - cones
 - used to sense color

Retina

- Center of retina has most of the →
 allows for high acuity of objects focused at center
- Edge of retina is dominated by →
 allows detecting motion of threats in periphery

Color Perception via Cones

- "Photopigments" used to sense color
- 3 types: blue, green, "red" (really yellow)
 - each sensitive to different band of spectrum
 - ratio of neural activity of the 3 \rightarrow color
 - other colors are perceived by combining stimulation

2

<section-header><figure><figure><text>

Distribution of Photopigments

- Not distributed evenly mainly reds (64%) & very few blues (4%) →?
 - insensitivity to short wavelengths (blue)
- No blue cones in retina center (high acuity) →?
 "disappearance" of small blue objects you fixate on
- As we age lens yellows & absorbs shorter wavelengths ->?
- sensitivity to blue is even more reducedImplication
 - don't rely on blue for text or small objects!

Color Sensitivity & Image Detection

- Most sensitive to the center of the spectrum

 blues & reds must be brighter than greens &
 yellows
- Brightness determined mainly by R+G
- Shapes detected by finding edges
 we use brightness & color differences
- Implication
 - hard to deal w/ blue edges & shapes

Focus

- Different wavelengths of light focused at different distances behind eye's lens
 - need for constant refocusing \rightarrow ? • causes fatigue
 - be careful about color combinations
- Pure (saturated) colors require more focusing then less pure (desaturated)
 - don't use saturated colors in UIs unless you really need something to stand out (stop sign)

Color Deficiency (AKA "color blindness")

- Trouble discriminating colors – besets about 9% of population
- Two main types
 - different photopigment response most common
 - reduces capability to discern small color diffs
 - *red-green deficiency* is best known
 lack of either green or red photopigment → can't discriminate colors dependent on R & G

Color Guidelines

- Avoid simultaneous display of highly saturated, spectrally extreme colors
 - e.g., no cyans/blues at the same time as reds, why?
 - refocusing!
 - desaturated combinations are better \rightarrow pastels

Using the Hue Circle

Pick non-adjacent colors
 opponent colors go well together
 (red & green) or (yellow & blue)

Color Guidelines (cont.)

- Size of detectable changes in color varies

 hard to detect changes in reds, purples, & greens
 easier to detect changes in yellows & blue-greens
 older users need higher brightness levels
- Hard to focus on edges created by only color

 use both brightness & color differences
- Avoid red & green in the periphery (no RG cones)
- Avoid pure blue for text, lines, & small shapes – also avoid adjacent colors that differ only in blue
- Avoid single-color distinctions

 mixtures of colors should differ in 2 or 3 colors
 helps color-deficient observers

One Minute Break

Why Model Human Performance?

- To test understanding
- To predict influence of new technology

The Model Human Processor

MHP Basics

- Sometimes serial, sometimes parallel
 - serial in action & parallel in recognition
 - pressing key in response to light
 - triving, reading signs, & hearing at once
- Parameters
 - processors have cycle time (T) ~ 100-200 ms
 - memories have capacity, decay time, & type

What is missing from MHP?

- Haptic memory
 for touch
- Moving from sensory memory to WM
 attention filters stimuli & passes to WM
- Moving from WM to LTM
 elaboration

Memory

- · Working memory (short term)
 - small capacity (7 ± 2 "chunks")
 - 6174591765 vs. (617) 459-1765
 - DECIBMGMC vs. DEC IBM GMC
 - rapid access (~ 70ms) & decay (~200 ms)
 pass to LTM after a few seconds of continued storage
- Long-term memory
 - huge (if not "unlimited")
 - slower access time (~100 ms) w/ little decay

MHP Principles of Operation

- Recognize-Act Cycle of the CP
 - on each cycle contents in WM initiate actions associatively linked to them in LTM
 - actions modify the contents of WM
- Discrimination Principle
 - retrieval is determined by candidates that exist in memory relative to retrieval cues
 - interference by strongly activated chunks

Principles of Operation (cont.)

· Fitts' Law

- moving hand is a series of microcorrections
 correction takes T_{p+}T_{c+}T_m = 240 msec
- time T_{pos} to move the hand to target size S which is distance D away is given by:
 T_{pos} = a + b log₂ (D/S + 1)
- summary
 - time to move the hand depends only on the relative precision required

Fitts' Law Example

Perception

- Stimuli that occur within one PP cycle fuse into a single concept
 - frame rate needed for movies to look real?
 time for 1 frame < Tp (100 msec) → 10 frame/sec.
- Perceptual causality
 - two distinct stimuli can fuse if the first event appears to *cause* the other
 - events must occur in the same cycle

Perceptual Causality

Simple Experiment

- Volunteer
- Start saying colors you see in list of words
 - when slide comes up
 - as fast as you can
- Say "done" when finished
- Everyone else time it...

Pape

Home Back Schedule Page Change

Simple Experiment

- Do it again
- Say "done" when finished

Memory

- Interference
 - two strong cues in working memory - link to different chunks in long term memory
- · Why learn about memory?
 - know what's behind many HCI techniques
 - helps you understand what users will "get"
 - aging population of users

Stage Theory

- Working memory is small & temporary
- · Maintenance rehearsal rote repetition
- not enough to learn information well
 Chunking / elaboration moves to LTM
 remember by organizing & relating to already learned items

Design UIs for Recognition over Recall

Input	×
Enter local directory name:	Ok
	Cancel
	<u>H</u> elp

- info reproduced from memory
- e.g., command name & semantics
- Recognition
 - presentation of info provides knowledge that info has been seen before
 - e.g., command in menu reminds you of semantics
 - easier because of cues to retrieval
 - cue is anything related to item or situation where learned
 e.g., giving hints, icons, labels, menu names, etc.
 Just Interface Design, Prototyping, and Evaluation
 40

Human Abilities Summary

- Color can be helpful, but pay attention to how colors combine

 - limitations of human perception people with color deficiency
- Model Human Processor
 - perceptual, motor, cognitive processors + memory
 - model allows us to make predictions
 - e.g., perceive distinct events in same cycle as one
- Memory
 three types: sensor, WM, & LTM
 herd to ac
 - interference can make hard to access LTM
 - cues in WM can make it easier to access LTM
- Key time to remember: 100 ms

Further Reading Vision and Cognition

Books

- The Psychology Of Human-Computer Interaction, by Card, Moran, & Newell, Erlbaum, 1983 *Human-Computer Interaction*, by Dix, Finlay, Abowd, and Beale, 1998.

- Perception, Irvin Rock, 1995.

Articles

- "Using Color Effectively (or Peacocks Can't Fly)" by Lawrence J. Najjar, IBM TR52.0018, January, 1990, http://mime1.marc.gatech.edu/mime/papers/color TR.html

Next Time

- Conceptual Models & Interface Metaphors
- Read
 Norman Chapter 1 (subset)