Reading assignment: Read Sections 7.1 and 7.2 of Sipser’s text. We will start Chapter 7 this week.

Problems:

1. A language \(B \) is called r.e.-complete if and only if (a) \(B \) is Turing-recognizable (equivalently, recursively enumerable) and (b) For all Turing-recognizable languages \(A \), \(A \leq_m B \). Prove that \(A_{TM} \) is r.e.-complete.

2. Show that \(A \) is decidable if and only if \(A \leq_m \{0^n1^n : n \geq 0\} \).

3. Let \(J = \{w \mid w = 0x \text{ for some } x \in A_{TM} \text{ or } w = 1y \text{ for some } y \in \overline{A_{TM}}\} \). Show that neither \(J \) nor \(\overline{J} \) is Turing-recognizable.

4. Show that there is an undecidable language contained in \(1^* \).

5. Which of the following problems are decidable? Justify each answer:

 (a) Given a Turing machine \(M \), does \(M \) accept 0101?

 (b) Given Turing machines \(M \) and \(N \), is \(L(N) \) the complement of \(L(M) \)?

 (c) Given a Turing machine \(M \), integers \(a \) and \(b \) and an input \(x \), does \(M \) run for more than \(a|x|^2 + b \) steps on input \(x \)?

6. (Bonus) Show that the following problem is undecidable: Given a Turing machine \(M \) and integers \(a \) and \(b \), does there exist an input \(x \) on which \(M \) runs for more than \(a|x|^2 + b \) steps on input \(x \)?

7. (Bonus) We showed previously that neither \(EQ_{TM} \) nor its complement is Turing-recognizable. Your problem is to show that, despite this, if you had a magic black box that decided \(A_{TM} \) that you could call repeatedly on different inputs, then you could decide \(EQ_{TM} \).