CSE 431 Spring 2015
Assignment #4
Due: Monday, May 4, 2015

Reading assignment: Read Sections 7.1 and 7.2 of Sipser’s text.

Problems:

1. Let $J = \{ w \mid w = 0x \text{ for some } x \in A_{TM} \text{ or } w = 1y \text{ for some } y \in \overline{A_{TM}} \}$. Show that neither J nor \overline{J} is Turing-recognizable.

2. Show that there is an undecidable language contained in 1^*.

3. Which of the following problems are decidable? Justify each answer:
 (a) Given a Turing machine M, does M accept 0101?
 (b) Given Turing machines M and N, is $L(N)$ the complement of $L(M)$?
 (c) Given a Turing machine M, integers a and b and an input x, does M run for more than $a|x|^2 + b$ steps on input x?

4. Prove that if K and L are decidable by Turing machines running in polynomial time then so are $K \cup L$, KL, and \overline{L}.

5. Let $TRI = \{ \langle G \rangle \mid G \text{ is an undirected graph that contains a triangle} \}$. Prove that there is a polynomial-time Turing machine that decides TRI.

6. (Bonus) Show that the following problem is undecidable: Given a Turing machine M and integers a and b, does there exist an input x on which M runs for more than $a|x|^2 + b$ steps on input x?

7. (Bonus) We showed previously that neither EQ_{TM} nor its complement is Turing-recognizable. Your problem is to show that, despite this, if you had a magic black box that decided A_{TM} that you could call repeatedly on different inputs, then you could decide $\overline{EQ_{TM}}$.
