Recap

- **Fact**: Th(\(\mathbb{N},+\)) is decidable (this is review from last lecture).

 For Example: \(\forall p \exists q : (q = p + 1)\)

- **Theorem**: Th(\(\mathbb{N}, +, x\)) is undecidable.

 For Example: \(\forall q \exists p \forall x, y : (p > q \land (x, y > 1 \rightarrow p \neq xy))\)

- **Basic Idea**: For every TM M and input w, there is a formula \(\phi_{M,w}\) with one free variable x such that [M accepts w \(\iff \exists x \phi_{M,w}\) is true].

 - \(\phi_{M,w}\) is in the language of Th(\(\mathbb{N},+\),x)

 - Given M and w, there exists a TM that computes \(\phi_{M,w}\)

- **Exact Proof**: Assume Th(\(\mathbb{N},+\),x) is decidable by a TM R. We define a machine N as follows:
 1. "On input \(< M, w >:\"
 2. Compute \(\phi_{M,w}\)
 3. Simulate R on \(\exists x \phi_{M,w}\)
 4. If R accept, ACCEPT
 5. If R reject, REJECT"

N decides \(A_{TM}\) which is a contradiction and implies that Th(\(\mathbb{N},+\),x) is undecidable

In order to prove \([\exists x \phi_{M,w} \iff M \text{ accept } w \text{ true}]\) we define x. x is a sequence of TM configurations represented as

\[
x = "c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow ... \rightarrow c_m"
\]

Where \(c_1\) is the start state configuration of M on w, \(c_i\) is a valid next step configuration of M on w, and \(c_m\) is the accept state config of M on w.
Example: How to encode a configuration as a number sequence:

- If the current state of a TM is 0110q60110, we can represent q6 as a base 2 number, but with 3 → 0 and 4 → 1
- The encoding of this state therefore looks like 201104430110
- Multiple states can be encoded as follows: 201104430110 | 201100444110 | ...

$\phi_{M,w}$ is true \iff our long number of states (the encoding of x shown above) is a valid set of configurations for M accepting w. In order to determine whether this is the case, we must be able to randomly access a digit of x. The process for doing so is shown in the example below.

Example: Accessing the k'th digit of a configuration:

- $mod(x, y, z) = \exists k \ s.t. \ (yk + z = x \land (z < y))$
 - Tests if $x \ mod \ y == z$
- $div(x, y, z) = \exists r \ s.t. \ (yz + r = x \land (r < y))$
 - Tests if the quotient of $x/y == z$
- $digit(x, k, d) = \exists q \ s (div(x, 10^{k-1}, q) \ and \ mod(q, 10, d))$
 - Tests if the k'th digit of x (from the right) == d
 - Exponentiation is allowed for this function

If we let x, x' be two arbitrary configurations, we can check whether TM M in configuration x goes to x' by creating a giant table of all changes that can be made to string x. We can then find the differences between x and x' and check our table to see if these are acceptable differences. This can be implemented using $digit(x, k, d)$. Care must be taken for the front and back of strings x and x' but no further detail was given. Lastly, if the above is true for all sequences involving x and x' then $[\phi_{M,w} \iff M \text{ accepts } w]$ has been proven.

Definition: Proof System (from 311). If we want to prove a sentence ϕ, we use a sequence of statements $S_1, S_2 \ldots S_m = \phi$. Each statement S_i is either an axiom or follows logically from previous statements.

Definition: Provability ϕ is provable if ϕ has a proof.

Definition: Soundness ϕ is provable \Rightarrow ϕ is true.

Fact: The set of provable sentences is turing recognizable (there is a TM that if given a provable sentence will accept)

Proof:
1. "On input ϕ
2. Enumerate all the proofs : In lexicographic order, $pi_1, pi_2, \ldots pi_n$
3. For all i, check whether pi_i is a valid proof of phi. If so, ACCEPT"
Theorem: There is a true sentence in $\text{Th}(\mathbb{N},+)$ that is unprovable.

Proof: Suppose that every true sentence of $\text{Th}(\mathbb{N},+)$ is provable. We define the following TM, TM_{FINAL}:

1. Given ϕ: Either ϕ is true or $\neg\phi$ is true
2. Run the provable recognizer on ϕ and $\neg\phi$ in parallel
3. The one that is provable will eventually be accepted
4. If ϕ is accepted, ACCEPT
5. If $\neg\phi$ is accepted REJECT

Since $\text{Th}(\mathbb{N},+)$ is undecidable, our supposition must be wrong, meaning there must be an unprovable true statement.

Example: $\psi = "This sentence is not provable"

Example: TM $S =$
1. "On any input:
2. Obtain my source code $<S>$ by Recursion Thm
3. Compute the formula $psi = \neg(\exists x\phi_{S,0})$
4. If ψ is provable , ACCEPT"

Claim: ψ is true but unprovable due to the following contradictions:

- If ψ is false, S accepts 0, meaning ψ provable and therefore ψ is true
- If ψ is unprovable, S doesnt accept 0, which means ψ is provable