NP-completeness

11.1 P and NP

Review: definition

- \(P = \bigcup_{k \geq 1} \text{TIME}(n^k) \);
- \(NP = \bigcup_{k \geq 1} \text{NTIME}(n^k) \);
- \(NP \rightarrow \) languages whose YES instance can be verified in (deterministic) polynomial time.

Following are some examples of problem in \(NP \)

Theorem 11.1 \(\text{SUBSET-SUM} \in NP \)

Proof:

\(\text{SUBSET-SUM} = \{ <S, t> : S = \{x_1, x_2, x_3, \ldots, x_k \} \text{ where } \exists N \subseteq S, N = \{n_1, n_2, n_3, \ldots, n_j \} \text{ such that } \sum n_i = t \} \)

(Example: \(S = \{1, 17, 4, 8, 3, 9\} \), \(t = 22 \), then \(<S, t> \) is a YES instance of \(\text{SUBSET-SUM} \).)

Certificate: Given a set of elements in \(S \) \(\{y_1, y_2, \ldots, y_j\} \) such that \(\sum y_i = t \)
Verifier: Check each \(y_i \) is from \(S \)
- Check no duplicates
- Check \(\sum y_i = t \)

\(\Rightarrow \text{SUBSET-SUM} \) is in \(NP \).

Theorem 11.2 \(L \in P \rightarrow L \in NP \)

Proof: Suppose \(L \in P \)
Certificate:
Verifier: Run the poly time decider for \(L \)
Theorem 11.3 \textit{SAT} \in NP

\textbf{Proof:}

\[
\text{SAT} = \{ < \phi > : \phi \text{ is satisfiable boolean formula} \}
\]

First define satisfiable boolean formula:

Boolean Formula: A formula with variables \(x_1, x_2, \ldots, x_n\) and their negation \(\bar{x}_i\), \(\lor\) and \(\land\)

(For example: \(\phi = (x_1 \lor \bar{x}_2) \land (x_3 \lor x_4) \land (x_2 \land \bar{x}_1)\))

A boolean formula is satisfiable: if \(\exists\) assignments that makes \(\phi\) true (evaluate to be 1).

(Taking the formula from above, assign \(x_1, x_2, x_3, x_4 = 1, \phi \rightarrow 1\), so \(\phi \in \text{SAT}\))

Certificate: Assignment to the variables
Verifier: Check if the assignment satisfies the formula.

\[\Rightarrow \text{SAT} \in NP\]

Theorem 11.4 \textit{3SAT} \in NP

\textbf{Proof:}

\[
\text{3SAT} = \{ < \phi > : \phi \text{ is a 3CNF that’s satisfiable} \}
\]

3CNF:
Definition: \(\phi = C_1 \land C_2 \land C_3 \cdots \land C_N\) where \(C_i = x_i \lor y_i \lor z_i\), \((x_i, y_i \text{ and } z_i \text{ are literals}(\rightarrow x_i \text{ and } \bar{x}_i))\)

(Example of 3CNF: \((x_2 \lor x_1 \lor \bar{x}_4) \land (x_2 \lor x_1 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3))\)

From the fact that SAT \(\in NP\),

\[\Rightarrow \text{3SAT} \in NP\]

11.2 Reduction

Definition 11.5 computable
\(a\ function \ f : \Sigma^* \rightarrow \Sigma^* \ is \ computable \ if \ there\ is\ a\ poly-time\ TM\ on\ input\ w\ write\ f(w)\ on\ the\ tape\ then\ HALTS.\)

Definition 11.6 reduciable
\(a\ language\ A\ is\ poly\ time\ reducible\ to\ language\ B\ if\ \exists\ poly\ time\ computable\ function\ f : \Sigma^* \rightarrow \Sigma^* \ such\ that\ \forall w \in \Sigma^*, w \in A \iff f(w) \in B\)

Denoted by \(A \leq_P B\)

Lemma 11.7 If \(A \leq_P B\) and \(B\) has a poly-time algorithm then \(A\) has a poly-time algorithm

\textbf{Proof:} For any input \(w\), to show \(w \notin A\)
1. use $A \leq_P B$, map w to $f(w) \in B$;

2. from the fact that $B \in P$, use the ploy time algorithm to compute $f(w)^2 \in B$ and use the result;

Then A has a poly-time algorithm.

Theorem 11.8 3SAT \leq_P CLIQUE

Proof:

Reminder:

$$\text{CLIQUE} = \{ \langle G, k \rangle : \text{if } G \text{ has a clique of size } k \}$$

TO show that 3SAT \leq_P CLIQUE, we want to show $\phi \iff\ f(\phi) \iff\ f(\phi)$ where $f(\phi)$ is some instance $\langle G, k \rangle \phi = C_1 \land C_2 \cdots \land C_m$ where $C_i = x_i \lor y_i \lor z_i$

$\phi \rightarrow f(\phi)$:

Map ϕ to $f(\phi)$ by add all possible edges excepts the ones between x_i and \bar{x}_i

Suppose ϕ is satisfiable, then each C_j has at least 1 true literal. Pick one true literal x_i from C_i.

For all $j \neq i$, there must be a x_j from C_j that’s true and since x_i and \bar{x}_i can not both be true, $x_i \neq \bar{x}_i$. So for each x_i where $i \in [1 \ldots m]$, there’s a path between x_i and x_j.

Thus we obtain a clique

Example:

P Let $\phi = (x_1 \lor x_2 \lor x_4) \land (\bar{x}_2 \lor x_3 \lor x_1) \land (x_4 \lor x_3 \lor x_1)$

Assign $x_2, x_3, x_4 = 1$, the map will look like

![Diagram of a graph showing a clique]

$f(\phi) \rightarrow \phi$:

Suppose G has a k clique.

To obtain ϕ, must choose one node for each C_j.

Decode each node to get a partial assignment then fill in the rest of the assignment arbitrarily.

Since there is no edge between x_i and \bar{x}_i, they must not be in the clique together, thus there’s no inconsistency.

$\Rightarrow \phi$ is satisfied.

11.3 COOK-LEVIN THEOREM

Definition 11.9 NP-complete

A language A is NP-complete if:

1. $A \in NP$;
2. \(\forall \text{ problem } B \in NP, B \leq_P A \)

Theorem 11.10 Cook-Levin Thm
\(P = NP \iff SAT \in P \)

Fact If \(A \) is NP-complete and \(A \in P \), then \(P = NP \)
Suppose \(A \in P \), \(A \) is NP-complete, then \(\forall B \in NP, B \leq_P A \), thus \(B \in P \) then we have \(P = NP \)

Theorem 11.11 If \(NP \neq P \), \(\exists L \text{ such that } L \in NP \land L \notin NP\text{-complete} \)

Theorem 11.12 Cook-Levin Thm (restate)
\(SAT \text{ is } NP\text{-complete} \)

We will prove this theorem next time.