1. Recall the graph 3-coloring problem:
 \[3\text{-COL} = \{ (G) : G \text{ is a 3-colorable graph} \}\]
 Also from class, we saw the problem
 \[\text{PLANAR-3-COL} = \{ (G) : G \text{ is a planar 3-colorable graph} \}\]
 Your goal is to prove that 3-COL \(\leq_p \) PLANAR-3-COL, thereby proving that PLANAR-3COL is NP-complete. You should use the following gadget to uncross edges:

 Do the problem in three parts:
 (a) Given colors \(c_1, c_2 \in \{R, G, B\} \), observe that there is always a way to 3-color the graph so that the opposite east-west corners are colored \(c_1 \) and the opposite north-south corners are colored \(c_2 \). Note that possibly \(c_1 = c_2 \). (That this is true follows from the two colorings given above.)
 (b) Show that any 3-coloring of the gadget must have the property that opposite corners have the same color.
 (c) Use this to reduce 3-COL to PLANAR-3-COL. Remember that if the edges \(x-y \) and \(u-v \) cross, then the gadget should remove the edge crossing, but enforce the same constraints that \(x/y \) must be colored differently and \(u/v \) must be colored differently.
2. A **monomial** in variables $x_1, x_2, ..., x_n$ is a product $x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$, where the α_i's are natural numbers. An **integral polynomial** in $x_1, x_2, ..., x_n$ is a sum of monomials with integer coefficients. For instance,

$$p(x_1, x_2, x_3) = 4x_1 x_2 - 7x_1 x_3^2 + 11 x_1^2 x_2^2 x_3 + 2$$

A root $(z_1, z_2, ..., z_n)$ of a polynomial p in n variables is a sequence of numbers such that $p(z_1, z_2, ..., z_n) = 0$. A root is integral if all the z_i's are integers.

Consider the language:

$$\text{INTEGRAL-ROOT} = \{ (p) : p \text{ is a polynomial with an integer root} \}$$

a) Show that $\text{3-SAT} \leq_p \text{INTEGRAL-ROOT}$.

b) Does this imply that INTEGRAL-ROOT is NP-complete? What’s the difficulty?

3. So far we have talked about **decision** problems where we simply want YES or NO answers, like: Is a Boolean formula ϕ satisfiable? Maybe if $P=NP$ then answering such questions is easy, but actually **finding** the solution (in this case, the satisfying assignment) is still hard! In this problem, you will show that this isn’t the case.

a) Show that if $P=NP$, there is a polynomial time algorithm that, given a Boolean formula ϕ, actually outputs a satisfying assignment. [Hint: If $P=NP$, then given a formula ϕ, there is poly-time algorithm to see if ϕ has a satisfying assignment. Use this algorithm to **FIND** a satisfying assignment by figuring it out bit-by-bit. In other words, figure out a good value for x_1 then for x_2 and so on. You will do this by running the satisfiability-checker many times on modifications of ϕ.]

b) Show that if $P=NP$, there is a polynomial-time algorithm that produces a 3-coloring of a graph G is such a coloring exists.

OPTIONAL PROBLEM (You may do this problem for extra credit, OR you can do it instead of the first three problems!)

Prove that if $P=NP$, then you can break the RSA cryptosystem

(http://en.wikipedia.org/wiki/RSA_(cryptosystem)) . In other words, show that given someone’s public key, you can compute their private key in polynomial time.