Lecture 10
\textbf{EMPTY}_{LBA} \textit{is undecidable}

An alternate proof, using a new technique –

\textbf{Computation histories}
Computation Histories

Configuration:
- state, head, tape

Encoding Configs:
- A string in $\Gamma^* Q \Gamma^*$ (trailing blanks optional)

Accepting (Rejecting) **History:** C_1, C_2, \ldots, C_n s.t.
1. C_1 is M’s initial configuration
2. C_n is an accepting (rejecting, resp.) config, and
3. For each $1 \leq i < n$, C_i moves to C_{i+1} in one step
Checking Histories

Many proofs require checking that a string, say

\[\# C_1 \# C_2 \# \ldots \# C_n \# \text{ in } (\# \cup Q \cup \Gamma)^* \]

is/is not an accepting history:

1. \(C_1 \) is \(M \)'s initial configuration:
 \[C_1 \in q_0 \Sigma^* \]

2. \(C_n \) is an accepting config:
 it contains \(q_{\text{accept}} \)

3. For each \(1 \leq i < n \), \(C_i \) moves to \(C_{i+1} \) in one step
 ...

"C_i moves to C_{i+1} in one step of M"

No change:

\[a_i = b_i \in \Gamma \]
\[p, q \in Q, \]
\[j = k \pm 1 \]
\[n = m \]

Except for adjustments, all near the head, reflecting the move:

\[\delta(p, a_{k+1}) = (q, b_{k+1}, L/R), \]
\[j = k+1 \text{ if } R \text{ else } \max(k-1,0) \]
and injecting blanks on the right as needed:

\[\text{if } n = k, \text{ then } \text{"}a_{k+1}\text{"} = \text{blank} \]
\[m = n+1, \ldots \]

Aside: one reason TM's have been so useful for computation theory is that they make questions like this very simple; "config" and "move" are much messier for "real" computers.
Given $\langle M, w \rangle$, build an LBA $L_{M,w}$ that recognizes

$$AH_{M,w} = \{ x \mid x = \# C_1 \# C_2 \# \ldots \# C_n \#, \text{ an Accepting computation } H \text{ of } M \text{ on } w \}$$

Then pass $\langle L_{M,w} \rangle$ to the hypothetical subr for EMPTY_{LBA}

Specifically, $L_{M,w}$ operates by checking that:

1. Its input is of the form $\# C_1 \# C_2 \# \ldots \# C_n \#
2. C_1$ is the initial config of M on w
3. C_n has M’s accept state, and
4. For each $1 \leq i < n$, C_i moves to C_{i+1} in one step of M
 (ziz-zag across adjacent pairs, checking as on prev slide)
Correctness

\[L(L_{M,w}) = AH_{M,w} = \{ x \mid x = \# C_1 \# C_2 \# \ldots \# C_n \#, \text{ an accepting computation history of } M \text{ on } w \} \]

Empty if \(M \) rejects \(w \) – no such \(x \)

Non-empty if \(M \) accepts \(w \) – there is one such history

So, “M accepts w” is equivalent to (non-)emptyness of \(AH_{M,w} \)

\[\therefore A_{TM} \leq_T EMPTY_{LBA} \quad \text{QED} \]
Similar ideas can be used to give reductions like

$$A_{TM} \leq_T \text{EMPTY}_X$$

for any machine or language class X expressive enough that we can easily, given M & w, represent $A_{H_{M,w}}$ in X.

A nice thing about histories is that they are so transparent that this is easy, even for more restricted models than LBA’s.

(One example in homework; another below)
ALL_{CFL} is Undecidable

\[\text{ALL}_{CFL} = \{ <G> \mid G \text{ is a CFG with } L(G) = \Sigma^* \} \]

A variant on the above proof, but instead of using \(AH_{M,w} \), (the set of accepting histories of \(M \) on \(w \)), we use its complement:

\[NH_{M,w} = \{ x \mid x \text{ is not an accepting computation history}^* \text{ of } M \text{ on } w \} \]

* and change the representation of a history so that alternate configs are reversed:

\[\# C_1 \# C_2^R \# C_3 \# C_4^R \# \ldots \# C_n^{(R)} \# \]
Given M, w, build a PDA P that, on input x, accepts if x does not start and end with $\#$; otherwise, let

$$x = \# C_1 \# C_2^R \# C_3 \# C_4^R \# \ldots \# C_n^{(R?)} \#$$

and nondeterministically do one of:
1. accept if C_1 is not M’s initial config on w
2. accept if C_n is not accepting, or
3. nondeterministically pick i and verify that C_i does not yield C_{i+1} in one step. (Push 1st; pop & compare to 2nd, with the necessary changes near the head.)

From P, build equiv CFG G; ask the hypothetical ALL_{CFL} subr if G generates all of $\left(\{\#\} \cup Q \cup \Gamma\right)^*$
Computable Functions

In addition to language recognition, we are also interested in computable functions.

Defn: a function \(f: \Sigma^* \rightarrow \Sigma^* \) is computable if \(\exists \) a TM \(M \) s.t. given any input \(w \in \Sigma^* \), \(M \) halts with just \(f(w) \) on its tape.
(Note: \(\text{domain}(f) = \Sigma^* \); crucial that \(M \) always halt, else value undefined.)

Ex 1: \(f(n) = n^2 \) is computable

Ex 2: \(g(\langle M, w \rangle) = \langle L_M, w \rangle \) (as in the EMPTY_LBA pf) is computable

Ex 2: \(h(\langle M, w \rangle) = \text{“1 if } M \text{ acc } w \text{ else 0” is uncomputable} \) (Why? Reduce \(\text{A}_{TM} \) to it.)
Reducibility

“A reducible to B” means could solve A if had subr for B
Can use B in arbitrary ways–call it repeatedly, use its answers to form new calls, etc. E.g.,

\[\text{WHACKY} \leq_T \text{ATM} \]

where \(\text{WHACKY} = \{ <M, w_1, w_2, \ldots, w_n> | M \text{ accepts } a_1 \ldots a_n, \text{ where } a_i = 0 \text{ if } M \text{ rejects } w_i, 1 \text{ if } M \text{ accepts } w_i \} \)

BUT in “practice,” *reductions rarely exploit this generality* and a more refined version is better for some purposes
Reduction

Notation (not in book, but common):

\[A \leq_T B \text{ means “A is Turing Reducible to B”} \]

I.e., if I had a TM deciding B, I could use it as a subroutine to solve A

Facts:

\[A \leq_T B \& B \text{ decidable implies } A \text{ decidable} \]

(definition)

\[A \leq_T B \& A \text{ undecidable implies } B \text{ undecidable} \]

(contrapositive)

\[A \leq_T B \& B \leq_T C \text{ implies } A \leq_T C \]
Mapping Reducibility

Defn: A is *mapping reducible* to B (A \(\leq_m \) B) if there is computable function \(f \) such that \(w \in A \iff f(w) \in B \)

A special case of \(\leq_T \):
 Call subr only once; its answer is *the* answer

Facts:
- A \(\leq_m \) B & B decidable \(\Rightarrow \) A is too
- A \(\leq_m \) B & A *undecidable* \(\Rightarrow \) B is too
- A \(\leq_m \) B & B \(\leq_m \) C \(\Rightarrow \) A \(\leq_m \) C
Mapping Reducibility

Defn: A is *mapping reducible* to B (A \(\leq_m B \)) if there is computable function \(f \) such that \(w \in A \iff f(w) \in B \)

A special case of \(\leq_T \):
Call subr only once; its answer is the answer

Facts:
\[
\begin{align*}
A \leq_m B & \land B \text{ decidable (recognizable)} \implies A \text{ is too} \\
A \leq_m B & \land A \text{ undecidable (unrecognizable)} \implies B \text{ is too} \\
A \leq_m B & \land B \leq_m C \implies A \leq_m C
\end{align*}
\]

Most reductions we’ve seen were actually \(\leq_m \) reductions.