Lecture 6
The Acceptance Problem for TMs

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM} \& w \in L(M) \} \]

Theorem: \(A_{TM} \) is Turing recognizable

\[\text{Pf: It is recognized by a TM } U \text{ that, on input } <M,w>, \text{ simulates } M \text{ on } w \text{ step by step. } U \text{ accepts iff } M \text{ does.} \]

\(U \) is called a \textit{Universal Turing Machine}
(Ancestor of the stored-program computer)

Note that \(U \) is a recognizer, not a decider.
A\textsubscript{TM} is Undecidable

\[A\textsubscript{TM} = \{ <M,w> | M \text{ is a TM} \& w \in L(M) \} \]

Suppose it’s decidable, say by TM H. Build a new TM D:

“on input <M> (a TM), run H on <M,<M>>; when it halts, halt & do the opposite, i.e. accept if H rejects and vice versa”

D accepts <M> iff H rejects <M,<M>> \hspace{1cm} (by construction)

iff M rejects <M> \hspace{1cm} (H recognizes A\textsubscript{TM})

D accepts <D> iff D rejects <D> \hspace{1cm} (special case)

Contradiction!
A specific non-Turing-recognizable language

Let M_i be the TM encoded by w_i, i.e., $<M_i>$ = w_i. If w_i is an illegal code, M_i = some default machine.

The i, j entry tells whether M_i accepts w_j.

Then L_D is not recognized by any TM.

Note: The above TM D, if it existed, would recognize exactly the language L_D defined in this diagonalization proof (which we already know is not recognizable).

Let M_i be the TM encoded by w_i. If w_i is a legal code, M_i is a Turing machine.

Then L_D is not recognized by any TM.

<table>
<thead>
<tr>
<th></th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
</tr>
</thead>
<tbody>
<tr>
<td><M1></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><M2></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><M3></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><M4></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><M5></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><M6></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L_D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Decidable \subsetneq Recognizable
Decidable = $\text{Rec} \cap \text{co-Rec}$

L decidable iff both L & L^c are recognizable

Pf:
(\iff) on any given input, dovetail a recognizer for L with one for L^c; one or the other must halt & accept, so you can halt & accept/reject appropriately.

(\Rightarrow): from last lecture, decidable languages are closed under complement (flip acc/rej)
Reduction

“A is reducible to B” means I could solve A if I had a subroutine for B

Ex:
Finding the max element in a list is reducible to sorting
pf: sort the list in increasing order, take the last element
(A big hammer for a small problem, but never mind...)
The Halting Problem

\[\text{HALT}_\text{TM} = \{ <M,W> \mid \text{TM M halts on input w} \} \]

Theorem: The halting problem is undecidable

Proof:

A = A_\text{TM}, B = \text{HALT}_\text{TM} Suppose I can reduce A to B. We already know A is undecidable, so must be that B is, too.

Suppose TM R decides \text{HALT}_\text{TM}. Consider S:

\begin{align*}
on \text{input } <M,w>, & \text{ run } R \text{ on it. If it rejects, halt & reject; if it accepts, run } M \text{ on } w; \text{ accept/reject as it does.} \\
\text{Then } S \text{ decides } A_\text{TM}, \text{ which is impossible. } R \text{ can’t exist.}
\end{align*}