Lecture 5
The Acceptance Problem for TMs

\[A_{TM} = \{ <M, w> \mid M \text{ is a TM} \land w \in L(M) \} \]

Theorem: \(A_{TM} \) is Turing recognizable

Pf: It is recognized by a TM \(U \) that, on input \(<M, w> \), simulates \(M \) on \(w \) step by step. \(U \) accepts iff \(M \) does. \(\square \)

\(U \) is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that \(U \) is a recognizer, not a decider.
Programming ENIAC, circa 1947

http://en.wikipedia.org/wiki/ENIAC
Cardinality

Two sets have equal cardinality if there is a bijection between them.

A set is *countable* if it is finite or has the same cardinality as the natural numbers.

Examples:
- Σ^* is countable (think of strings as base-$|\Sigma|$ numerals).
- Even natural numbers are countable: $f(n) = 2n$.
- The Rationals are countable.
More cardinality facts

If \(f: A \to B \) in an injective function ("1-1", but not necessarily "onto"), then

\[
|A| \leq |B|
\]

(Intuitive: \(f \) is a bijection from \(A \) to its range, which is a subset of \(B \), and \(B \) can’t be smaller than a subset of itself.)

Theorem (Cantor-Schroeder-Bernstein):

If \(|A| \leq |B| \) and \(|B| \leq |A| \) then \(|A| = |B| \)
The Reals are Uncountable

Suppose they were
List them in order
Define \(X \) so that its \(i^{th} \) digit \(\neq \) \(i^{th} \) digit of \(i^{th} \) real
Then \(X \) is not in the list
Contradiction

A detail: avoid .000... , .9999... in \(X \)
Number of Languages in Σ^* is Uncountable

Suppose they were
List them in order
Define L so that $w_i \in L$ $\iff w_i \notin L_i$
Then L is not in the list
Contradiction
“Most” languages are neither Turing recognizable nor Turing decidable

Pf:

“< >” maps TMs into Σ^*, a countable set, so the set of TMs, and hence of Turing recognizable languages is also countable; Turing decidable is a subset of Turing recognizable, so also countable. But by the previous result, the set of all languages is uncountable.
A specific non-Turing-recognizable language

Let M_i be the TM encoded by w_i, i.e. $<M_i> = w_i$

$(M_i = \text{some default machine, if } w_i \text{ is an illegal code.})$

i, j entry tells whether M_i accepts w_j

Then D is not recognized by any TM
Theorem: The class of Turing recognizable languages is \textit{not} closed under complementation.

Proof:

The \textit{complement} of D, is Turing recognizable:

On input w_i, run $<M_i>$ on w_i (= $<M_i>$); accept if it does. E.g. use a universal TM on input $<M_i,<M_i>>$
Theorem: The class of Turing decidable languages is closed under complementation.

Proof:

Flip $q_{\text{accept}}, q_{\text{reject}}$
Decidable \subseteq Recognizable

Diagram:

- Decidable
- Recognizable
- Co-recognizable

Relationships:

- Decidable \subseteq Recognizable
- Decidable $\not\equiv$ Co-recognizable