Lecture 4
Announcements

Late policy
eTurnin
Office hours M 2:30, W 12:30, Th 5:00
Midterm Fri 5/7, probably
Nondeterministic Turing Machines

\[\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\}) \]

Accept if *any* path leads to \(q_{\text{accept}}\); reject otherwise, (i.e., *all* halting paths lead to \(q_{\text{reject}}\))
Simulating an NTM

Key issue: avoid getting lost on ∞ path

Key Idea: *breadth*-first search

$$\text{tree arity } \leq |Q| \times |\Gamma| \times |\{L,R\}| \quad (3 \text{ in example})$$
A TM "Enumerable"
L Turing recognizable iff a TM enumerates it

\[\iff \]: Run enumerator, compare each “output” to input; accept if they match (reject by not halting if input never appears)

\[\implies \]: The “obvious” idea: enumerate \(\Sigma^* \), run the recognizer on each, output those that are accepted.

[Oops, doesn’t work...]
L Turing recognizable iff a TM enumerates it

(⇒): A better idea—“dovetailing”:

For i = 0, 1, 2, 3, ... :

At stage i, run the recognizer for i steps on each of the first i strings in \(\Sigma^* \), output any that are accepted.
Encoding things

\[G = (V, \Sigma, R, S); \quad <G> = (S, A, B, \ldots, (a, b, \ldots), (S \rightarrow aA, S \rightarrow b, A \rightarrow cAb, \ldots), S) \]

or

\[<G> = ((A_0, A_1, \ldots, (a_0, a_1, \ldots), (A_0 \rightarrow a_0 A_1, A_0 \rightarrow a_1, A_1 \rightarrow a_2 A_1 a_1, \ldots), A_0) \]

\[\Sigma = ? \]

\[DFA \quad D = (Q, \Sigma, \delta, q_0, F); \quad <D> = (...) \]

\[TM \quad M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r); \quad <M> = (...) \]

\[... \]
Decidability

Recall: L *decidable* means there is a TM recognizing L *that always halts*.

Example:

“The acceptance problems for DFAs”

\[A_{DFA} = \{ <D,w> \mid D \text{ is a DFA} \& w \in L(D) \} \]
Some Decidable Languages

The following are decidable:

\(A_{\text{DFA}} = \{ <D,w> \mid D \text{ is a DFA} \& w \in L(D) \} \)

pf: simulate \(D \) on \(w \)

\(A_{\text{NFA}} = \{ <N,w> \mid N \text{ is an NFA} \& w \in L(N) \} \)

pf: convert \(N \) to a DFA, then use previous as a subroutine

\(A_{\text{REX}} = \{ <R,w> \mid R \text{ is a regular expr} \& w \in L(R) \} \)

pf: convert \(R \) to an NFA, then use previous as a subroutine
\(\text{EMPTY}_{\text{DFA}} = \{ <D> \mid \text{D is a DFA and } L(D) = \emptyset \} \)

pf: is there no path from start state to any final state?

\(\text{EQ}_{\text{DFA}} = \{ <A,B> \mid \text{A & B are DFAs s.t. } L(A) = L(B) \} \)

pf: equal iff \(L(A) \oplus L(B) = \emptyset \), and \(x \oplus y = (x \cap y^c) \cup (x^c \cap y) \), and regular sets are closed under \(\cup \), \(\cap \), complement

\(\text{A}_{\text{CFG}} = \{ <G,w> \mid \ldots \} \)

pf: see book

\(\text{EMPTY}_{\text{CFG}} = \{ <G> \mid \ldots \} \)

pf: see book
$EQ_{CFG} = \{ <A,B> | A \& B \text{ are CFGs s.t. } L(A) = L(B) \}$

This is NOT decidable