1. 3.15(b)

2. 3.16(b) Prove it two different ways: first using an ordinary (deterministic) TM, then using a nondeterministic TM. [You may do 3.15(b) using either model.]

3. 4.7

4. Let $\mathcal{F} = \{f : \mathbb{N} \rightarrow \mathbb{N}\}$, and $\mathcal{F}_2 = \{b : \mathbb{N} \rightarrow \{0, 1\}\}$, i.e., the set of all functions mapping natural numbers to natural numbers and the set of all $\{0, 1\}$-valued functions on \mathbb{N}, resp. Show that both sets are uncountably infinite.

Extra credit: Show that both have the same cardinality as the reals.

5. Let L be a language. Prove
 (a) L is recognizable if and only if there is a decidable language D such that
 $$L = \{x \mid \exists y \text{ s.t. } \langle x, y \rangle \in D\}.$$
 (b) L is co-recognizable if and only if there is a decidable language D such that
 $$L = \{x \mid \forall y \text{ s.t. } \langle x, y \rangle \in D\}.$$

6. (a) 4.28
 (b) Read definition 7.1 (“time complexity”). Suppose the set A in 4.28 included TMs deciding every language decidable in time n^2, say. What can you say about the time complexity of the decidable language D built from that A?
 (c) Extra Credit: Show that such a set A is Turing enumerable, i.e., it is possible to enumerate a series of TMs, each of which is a decider, and every language decidable in time n^2 will be decided by at least one of the machines in the list.