1. Show that there is an undecidable language $L \subseteq \{1\}^*$.

2. (Reduction of search problems to decision problems) Let $f : \Sigma_0^* \rightarrow \Sigma_0^*$ be an arbitrary function. Define a related language $L_f \subseteq \Sigma^*$ and describe a Turing machine to compute f using a machine that decides L_f. Also show how to decide L_f using a machine that computes f. The alphabet Σ does not have to be the same as Σ_0.

3. Tell whether the following languages are (a) decidable, (b) recognizable but not decidable, (c) co-recognizable but not decidable, or (d) neither recognizable or co-recognizable. Justify your answer.

 (a) $\{\langle M \rangle : \text{TM } M \text{ halts within 2008 steps on some input}\}$.

 (b) $\{\langle M \rangle : \text{TM } M \text{ halts within 2008 steps on every input}\}$.

4. Let \mathcal{P} be a collection of Turing-recognizable languages. Suppose that there exists an infinite language $L \in \mathcal{P}$ such that no finite subset of L belongs to \mathcal{P}. In this case, prove that the language

 $\mathcal{P}_{TM} = \{\langle M \rangle : \text{M is a TM and } L(M) \in \mathcal{P}\}$

 is not Turing-recognizable.

5. **Extra credit.** Define a relation $R \subseteq (\Sigma^*)^k$ to be decidable if the language

 $L_R = \{\langle x_1, x_2, \ldots, x_k \rangle : (x_1, x_2, \ldots, x_k) \in R\}$

 is decidable. Define Σ_k for $k \geq 0$ to be the class of all languages L for which there is a decidable $(k + 1)$-ary relation R such that

 $L = \{x : \exists x_1 \forall x_2 \exists x_3 \cdots Q_k x_k R(x_1, x_2, \ldots, x_k, x)\}$,

 where the quantifier Q_k is \exists if k is odd and \forall if k is even. We define

 $\Pi_k = \text{co} \Sigma_k = \{L : \bar{L} \in \Sigma_k\}$.

 In this notation, Σ_0 is the set of decidable languages, and Σ_1 is the set of Turing-recognizable languages. Finally, define

 $\text{ALL}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \Sigma^*\}$.
(a) Prove that ALL_{TM} is Π_2-complete, in the sense that (i) it belongs to Π_2 and (ii) every language $A \in \Pi_2$ mapping reduces to ALL_{TM}.

(b) You know how to prove that $\text{ALL}_{TM} \notin \Pi_1$ (by proving that $A_{TM} \leq_m \text{ALL}_{TM}$). You don’t have to do this. Instead, use part (a) to show that $\text{ALL}_{TM} \notin \Sigma_1$, i.e. ALL_{TM} is not Turing-recognizable.