Reading assignment: Finish reading Chapter 5 of Sipser’s text. (You may also want to skim section 6.3 of the text.)

Problems:

1. (10 points) Show that there is a undecidable language contained in 1^*.

2. (10 points) Let $S = \{ \langle M \rangle \mid L(M) = \{ \langle M \rangle \} \}$ and M is a Turing machine. Prove that neither S nor \overline{S} is Turing-recognizable.

3. Which of the following problems are decidable? Justify each answer:

 (a) (10 points) Given Turing machines M and N, is $L(N)$ the complement of $L(M)$?

 (b) (10 points) Given a Turing machine M, integers a and b, and input x, does M run for more than $a|x|^2 + b$ steps on input x?

 (c) (20 points) Given a program P written in Java, or C, or (insert your favorite programming language) that does not read any input but is executed with no bound on the size of integers, does P ever attempt to index an array outside its allocated array bounds.

5. (Extra Credit) Show that the following problem is undecidable: Given a Turing machine M and integers a and b, does there exist an input x on which M runs for more than $a|x|^2 + b$ steps on input x?

6. (Extra Credit) Rice’s Theorem shows that for every ‘non-trivial’ property \mathcal{P} of languages,

$$\mathcal{P}_{TM} = \{ \langle M \rangle \mid L(M) \text{ has property } \mathcal{P} \}$$

is undecidable where by ‘\mathcal{P} is non-trivial’ we mean that \mathcal{P} contains some but not all Turing-recognizable languages. Some of these \mathcal{P}_{TM} are not only undecidable, they are also not Turing-recognizable:

Show that if there is some infinite Turing-recognizable language L that has property \mathcal{P} but none of the finite subsets of L have property \mathcal{P} then \mathcal{P}_{TM} is not Turing recognizable.