NP-Completeness reductions

NP-hardness & NP-completeness

Definition: A problem B is NP-hard iff every problem $A \in NP$ satisfies $A \leq_p B$

Definition: A problem B is NP-complete iff B is NP-hard and $B \in NP$

Even though we seem to have lots of hard problems in NP it is not obvious that such super-hard problems even exist!

Reductions by Simple Equivalence

Show: Independent-Set \leq_p Clique

Independent-Set:
- Given a graph $G = (V, E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that no two vertices in U are joined by an edge.

Clique:
- Given a graph $G = (V, E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

Independent-Set \leq_p Clique

- Given (G, k) as input to Independent-Set where $G = (V, E)$
- Transform to (G', k) where $G' = (V, E')$ has the same vertices as G but E' consists of precisely those edges that are not edges of G
- U is an independent set in G \iff U is a clique in G'

Satisfiability

- Boolean variables x_1, \ldots, x_n, taking values in $\{0, 1\}$: 0 = false, 1 = true
- Literals
 - x_i or $\neg x_i$ for $i = 1, \ldots, n$
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
Satisfiability
- CNF formula example
 \((x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \neg x_4 \lor x_7 \lor x_9) \)
 - If there is some assignment of 0’s and 1’s to the variables that makes it true then we say the formula is \textit{satisfiable}
 - the one above is, the following isn’t
 - \(x_1 \land (\neg x_1 \lor x_4) \land (\neg x_2 \lor x_5) \land \neg x_3 \)
- \(\text{SAT:} \) Given a formula \(F \), is it satisfiable?

Cook-Levin Theorem
- Theorem (Cook-Levin 1971):
 \(\text{SAT} \subseteq \text{P} \iff \text{P} = \text{NP} \)
 - Follows by showing that \(\text{SAT} \) is \textit{NP}-complete

Recall this useful property of polynomial-time reductions
- Theorem: If \(A \leq_p B \) and \(B \leq_p C \) then \(A \leq_p C \)

Cook-Levin Theorem & Implications
- Theorem: \(\text{SAT} \) is \textit{NP}-complete
- Corollary: \(C \) is \textit{NP}-hard \(\iff \) \(\text{SAT} \leq_p C \)
 - (or \(B \leq_p C \) for any \textit{NP}-complete problem \(B \))
- Proof:
 - If \(B \) is \textit{NP}-hard then every problem in \textit{NP} polynomial-time reduces to \(B \), in particular \(\text{SAT} \) does since it is in \textit{NP}
 - For any problem \(A \) in \textit{NP}, \(A \leq_p \text{SAT} \) and so if \(\text{SAT} \leq_p C \) we have \(A \leq_p C \).
 - therefore \(C \) is \textit{NP}-hard if \(\text{SAT} \leq_p C \)

Steps to Proving Problem \(B \) is \textit{NP}-complete
- Show \(B \) is \textit{NP}-hard:
 - State: Reduction is from \textit{NP}-hard Problem \(A \)
 - Show what the map \(f \) is
 - Argue that \(f \) is polynomial time
 - Argue correctness: \textit{two directions} Yes for \(A \) implies Yes for \(B \) and vice versa.
- Show \(B \) is in \textit{NP}
 - State what certificate is and why it works
 - Argue that it is polynomial-time to check.

Another \textit{NP}-complete problem:
\textit{Satisfiability} \(\leq_p \text{Independent-Set} \)
- A Tricky Reduction:
 - mapping \textit{CNF} formula \(F \) to a pair \(<G,k> \)
 - Let \(m \) be the number of clauses of \(F \)
 - Create a vertex in \(G \) for each literal in \(F \)
 - Join two vertices \(u \), \(v \) in \(G \) by an edge if
 - \(u \) and \(v \) correspond to literals in the same clause of \(F \), \textit{(green edges)}
 - \(u \) and \(v \) correspond to literals \(x \) and \(\neg x \) (or vice versa) for some variable \(x \). \textit{(red edges)}.
 - Set \(k = m \)
 - Clearly polynomial-time
Satisfiability \(\leq_p\) Independent-Set

\[F: (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3) \]

Correctness:

- If \(F\) is satisfiable then there is some assignment that satisfies at least one literal in each clause.

- Consider the set \(U\) in \(G\) corresponding to the first satisfied literal in each clause.

- Since \(U\) has only one vertex per clause, no two vertices in \(U\) are joined by green edges.

- Since a truth assignment never satisfies both \(x\) and \(\neg x\), \(U\) doesn’t contain vertices labeled both \(x\) and \(\neg x\) and so no vertices in \(U\) are joined by red edges.

- Therefore \(G\) has an independent set, \(U\), of size at least \(m\).

- Therefore \((G, m)\) is a YES for independent set.

Given assignment \(x_1 = x_2 = x_3 = x_4 = 1\), \(U\) is as circled

Given \(U\), satisfying assignment is \(x_1 = x_2 = x_3 = 0\) or \(x_2 = 0\) or 1

Independent-Set is NP-complete

- We just showed that Independent-Set is NP-hard and we already knew Independent-Set is in NP.

- Corollary: Clique is NP-complete

 - We showed already that Independent-Set \(\leq_p\) Clique and Clique is in NP.
Reductions from a Special Case to a General Case

Show: Vertex-Cover \(\leq P\) Set-Cover

- **Vertex-Cover:**
 - Given an undirected graph \(G=(V,E)\) and an integer \(k\) is there a subset \(W\) of \(V\) of size at most \(k\) such that every edge of \(G\) has at least one endpoint in \(W\)? (i.e. \(W\) covers all edges of \(G\)).

- **Set-Cover:**
 - Given a set \(U\) of \(n\) elements, a collection \(S_1, \ldots, S_m\) of subsets of \(U\), and an integer \(k\), does there exist a collection of at most \(k\) sets whose union is equal to \(U\)?

The Simple Reduction

Transformation \(f\) maps \(\langle G=(V,E),k \rangle\) to \(\langle U,S_1, \ldots, S_m,k' \rangle\)

- \(U \leftarrow E\)
 - For each vertex \(v \in V\) create a set \(S_v\) containing all edges that touch \(v\)
- \(k' \leftarrow k\)
 - Reduction \(f\) is clearly polynomial-time to compute
 - We need to prove that the resulting algorithm gives the right answer.

Proof of Correctness

Two directions:

- If the answer to Vertex-Cover on \((G,k)\) is YES then the answer for Set-Cover on \((T(G),k)\) is YES
 - If a set \(W\) of \(k\) vertices covers all edges then the collection \(\{S_v \mid v \in W\}\) of \(k\) sets covers all of \(U\)
- If the answer to Set-Cover on \((T(G),k)\) is YES then the answer for Vertex-Cover on \((G,k)\) is YES
 - If a subcollection \(S_{v_1}, \ldots, S_{v_k}\) covers all of \(U\) then the set \(\{v_1, \ldots, v_k\}\) is a vertex cover in \(G\).

More Reductions

Show: Independent Set \(\leq P\) Vertex-Cover

- **Vertex-Cover:**
 - Given an undirected graph \(G=(V,E)\) and an integer \(k\) is there a subset \(W\) of \(V\) of size at most \(k\) such that every edge of \(G\) has at least one endpoint in \(W\)? (i.e. \(W\) covers all edges of \(G\)).

- **Independent-Set:**
 - Given a graph \(G=(V,E)\) and an integer \(k\), is there a subset \(U\) of \(V\) with \(|U| \geq k\) such that no two vertices in \(U\) are joined by an edge.

Reduction Idea

Claim: In a graph \(G=(V,E)\), \(S\) is an independent set iff \(V-S\) is a vertex cover

- \(\Rightarrow\) Let \(S\) be an independent set in \(G\)
 - Then \(S\) contains at most one endpoint of each edge of \(G\)
 - At least one endpoint must be in \(V-S\)
 - \(V-S\) is a vertex cover
- \(\Leftarrow\) Let \(W=V-S\) be a vertex cover of \(G\)
 - Then \(S\) does not contain both endpoints of any edge (else \(W\) would miss that edge)
 - \(S\) is an independent set

Reduction

Map \(\langle G,k \rangle\) to \(\langle G,n-k \rangle\)

- Previous lemma proves correctness
- Clearly polynomial time
- We also get that Vertex-Cover \(\leq P\) Independent Set
Problems we already know are NP-complete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover

There are 1000’s of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?

Theorem: 3-SAT is NP-complete

Alternate Proof based on CNFSAT:

3-SAT \in NP

Certificate is a satisfying assignment

Just like SAT it is polynomial-time to check the certificate

CNFSAT \leq_p 3-SAT

Reduction:

- map CNF formula F to another CNF formula G that has precisely 3 variables per clause.
- G has one or more clauses for each clause of F
- G will have extra variables that don’t appear in F
- for each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C

CNFSAT \leq_p 3-SAT

Goal:

- An assignment a to the original variables makes clause C true in F if
 - there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to C true.
- Define the reduction clause-by-clause
 - We’ll use variable names z_j to denote the extra variables related to a single clause C to simplify notation
 - in reality, two different original clauses will not share z_j

For each clause C in F:

- If C has 3 variables:
 - Put C in G as is
- If C has 2 variables, e.g. $C = (x_1 \lor x_2) \land (x_3 \lor \neg x_1) \land (x_4 \lor \neg x_2)$
 - Use a new variable z and put two clauses in G
 - $(x_1 \lor \neg x_2 \lor z) \land (x_1 \lor \neg x_2 \lor \neg z)$
 - If original C is true under assignment a then both new clauses will be true under a
 - If new clauses are both true under some assignment b then the value of z doesn’t help in one of the two clauses so C must be true under b
- If C has 1 variable: e.g. $C = x_1$
 - Use two new variables z_1, z_2 and put 4 new clauses in G
 - $(x_1 \lor \neg z_1 \lor z_2) \land (x_1 \lor \neg z_1 \lor \neg z_2) \land (x_1 \lor z_1 \lor \neg z_2) \land (x_1 \lor z_1 \lor z_2)$
 - If original C is true under assignment a then all new clauses will be true under a
 - If new clauses are all true under some assignment b then the values of z_1 and z_2 don’t help in one of the 4 clauses so C must be true under b
CNFSAT ≤\text{P} 3-SAT
- If C has $k \geq 4$ variables: e.g. $C = (x_1 \lor \ldots \lor x_k)$
 - Use $k-3$ new variables z_2, \ldots, z_{k-2} and put $k-2$ new clauses in G

 $(x_1 \lor x_2 \lor z_2) \land (\neg x_2 \lor x_3 \lor z_3) \land (\neg x_3 \lor x_4 \lor z_4) \land \ldots$

 $(\neg x_{k-3} \lor x_{k-2} \lor z_{k-2}) \land (\neg z_{k-2} \lor x_{k-1} \lor x_k)$
- If original C is true under assignment a then some x_i is true for $i \leq k$. By setting z_j true for all $j < i$ and false for all $j \geq i$, we can extend a to make all new clauses true.
- If new clauses are all true under some assignment b then some x_i must be true for $i \leq k$ because $z_2 \land (\neg z_2 \lor z_3) \land \ldots \land (\neg z_{k-3} \lor z_{k-2}) \land \neg z_{k-2}$ is not satisfiable

Graph Colorability
- **Defn:** Given a graph $G=(V,E)$, and an integer k, a k-coloring of G is
 - an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
- **3-Color:** Given a graph $G=(V,E)$, does G have a 3-coloring?
- **Claim:** 3-Color is NP-complete
- **Proof:** 3-Color is in NP:
 - Hint is an assignment of red, green, blue to the vertices of G
 - Easy to check that each edge is colored correctly

3-SAT ≤\text{P} 3-Color
- **Reduction:**
 - We want to map a 3-CNF formula (F) to a graph (G) so that
 - G is 3-colorable iff F is satisfiable

3-SAT ≤\text{P} 3-Color
- **Variable Part:** in 3-coloring, variable colors correspond to some truth assignment (same color as T or F)

3-SAT ≤\text{P} 3-Color
- **Clause Part:** Add one 6 vertex gadget per clause connecting its 'outer vertices' to the literals in the clause
Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph.

Any 3-coloring of the graph colors each gadget triangle using each color.

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget.

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F.

Any 3-coloring of the graph yields a satisfying assignment to the formula.

More NP-completeness

Subset-Sum problem

Given n integers \(w_1, \ldots, w_n\) and integer \(W\)

Is there a subset of the \(n\) input integers that adds up to exactly \(W\)?

O(nW) solution from dynamic programming but if \(W\) and each \(w_i\) can be \(n\) bits long then this is exponential time.
3-SAT ≤ₚ Subset-Sum

Given a 3-CNF formula with \(m \) clauses and \(n \) variables.

- Will create \(2m + 2n \) numbers that are \(m+n \) digits long.
 - Two numbers for each variable \(x_i \):
 - \(t_i \) and \(f_i \) (corresponding to \(x_i \) being true or \(x_i \) being false).
 - Two extra numbers for each clause:
 - \(u_j \) and \(v_j \) (filler variables to handle number of false literals in clause \(C_j \)).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(C_j := (x_1 \lor \neg \ x_2 \lor \neg \ x_3 \lor \neg \ x_4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_1)</td>
<td>(1000 \ldots \ 00010 \ldots \ 1)</td>
<td></td>
</tr>
<tr>
<td>(f_1)</td>
<td>(1000 \ldots \ 01001 \ldots \ 0)</td>
<td></td>
</tr>
<tr>
<td>(t_2)</td>
<td>(0100 \ldots \ 01000 \ldots \ 1)</td>
<td></td>
</tr>
<tr>
<td>(f_2)</td>
<td>(0100 \ldots \ 00111 \ldots \ 0)</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(u_{i \neq j})</td>
<td>(0000 \ldots \ 01000 \ldots \ 0)</td>
<td></td>
</tr>
<tr>
<td>(u_{i \neq j})</td>
<td>(0000 \ldots \ 00100 \ldots \ 0)</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(W)</td>
<td>(1111 \ldots \ 13333 \ldots \ 3)</td>
<td></td>
</tr>
</tbody>
</table>