
CSE 431: Introduction to Theory of Computation Spring 2005

Sample Final

Instructions: The exam is on 100 points. There are five questions, each worth 20 points. You
have 1 hour and 50 minutes to answer all the questions. You are allowed to use one two-sided (at
least 11pt font) notes sheet.

1. For each of the following assertions, state whether they are True, False, or Open according to
our current state of knowledge of computability and complexity theory, as described in class.
You do not have to justify your answer choice.

(a) HAMPATH ≤P PATH

(b) PATH ≤P HAMPATH

(c) The intersection of a decidable language with a Turing-recognizable language is always
decidable.

(d) 0∗1∗ is PSPACE-complete.

(e) NL = coNL

(f) P = NP ∩ coNP

(g) All languages in P can decided in SPACE(log2 n).

(h) There exists an undecidable language L for which L ≤m L.

(i) If P = NP, every language in NP is NP-complete.

(j) P contains all context-free languages.

2. Define POLY TM = {〈M〉 | M is a Turing machine that runs in polynomial time}. Prove that
POLY TM is undecidable.
(Warning: POLY TM is not the language {〈M〉 | L(M) ∈ P}.)

3. For a polynomial with integer coefficients in several variables, an integral root is an assignment
of integers to the variables so that the polynomial evaluates to 0. For example, the polynomial
2x2

1x2 − x3
1x

2
2 has an integral root x1 = 2 and x2 = 1, where as the polynomial x2

1 + x2
2 + 1

has no integral root. Consider the computational problem of determining, given a polynomial
with integer coefficients, whether it has an integral root. We can capture this problem by the
language:

ROOT = {〈p〉| p is a polynomial in several variables having an integral root} .

In his famous address at the International Congress of Mathematicians in Paris in 1900, David
Hilbert posed 23 mathematical problems as challenges for the 20th century, the 10’th problem
of which, re-stated in the language of computability theory, was to give a decider for ROOT .
We now know, however, that ROOT is in fact undecidable, so no algorithm exists to tell if a
polynomial in several variables has an integral root.



In this problem you are to prove a different property of ROOT , namely, that ROOT is
NP-hard.

(Hint: Try a reduction from 3SAT or SUBSETSUM. In either case, first think about how
you can ensure that any potential root must take 0/1 values. The fact that z2 is always
non-negative for real z is very helpful for this problem.)

4. A linear bounded automata (LBA) is a one-tape Turing machine that can only operate within
the n input cells (assume that if the machine tries to move its head off either end of the input,
the head stays where it is). LBA’s are discussed in Section 5.1, pages 177-180, of Sipser’s
book.
Let ALBA = {〈M,w〉 | M is an LBA that accepts w}.

(a) Show that ALBA ∈ PSPACE. (Warning: Do not forget tomust argue that your proposed
polynomial space algorithm always halts.)

(b) Do we know whether ALBA ∈ P? Justify your answer.

5. For a positive integer n, the parity function parityn : {0, 1}n → {0, 1} outputs 1 if an odd
number of 1s appear in the input variables. Show that parityn can be computed with O(n)
size ciruits (that have NOT gates, and AND/OR gates with fan-in two).
(Hint: Use a recursive (Divide and conquer) approach)


