All solutions should be neatly written or type set. All major steps in proofs and algorithms must be justified.

1. (10 points) Use a diagonal argument to show that
 \[\text{halts on all inputs} \]
 is not Turing recognizable. Hint: Your proof by contradiction will assume that there is a Turing enumerater of \(AH_{TM} \). The enumerator outputs the members of \(AH_{TM} \) in the order \(\langle M_1 \rangle, \langle M_2 \rangle, \ldots \). The possible inputs are members of \(\{0,1\}^* \) which can also be indexed \(s_1, s_2, \ldots \). Define a Turing machine decider \(M \) whose encoding cannot appear in \(AH_{TM} \).

2. (10 points) Let \(E \) be an enumerator with the property that if \(E \) enumerates an infinite language in the order \(w_1, w_2, \ldots \) (the eventual output of \(E \) is \(w_1 \# w_2 \# w_3 \# \cdots \)) and \(|w_i| < |w_{i+1}| \) for all \(i \). Show that the language enumerated is Turing decidable.

3. (10 points) Show that every infinite Turing recognizable language has an infinite Turing decidable subset. Hint: Use 2 above.