CSE 427
 Winter 202I
 MLE, EM

Outline

HW\#I Discussion
MLE: Maximum Likelihood Estimators
EM: the Expectation Maximization Algorithm

Next: Motif description \& discovery

HW \# I Discussion

	Species	Name	Description -ion	score to I I	
\mathbf{I}	Homo sapiens (Human)	MYODI_HUMAN	Myoblast determination protein I	PI5I72	I709
$\mathbf{2}$	Homo sapiens (Human)	TALI_HUMAN	T-cell acute lymphocytic leukemia protein I (TAL-I)	PI7542	I43
$\mathbf{3}$	Mus musculus (Mouse)	MYODI_MOUSE	Myoblast determination protein I	PI0085	I500
$\mathbf{4}$	Gallus gallus (Chicken)	MYODI_CHICK	Myoblast determination protein I homolog (MYODI homolog)	PI6075	I020
$\mathbf{5}$	Xenopus laevis (African clawed frog)	MYODA_XENLA	Myoblast determination protein I homolog A (Myogenic factor I)	PI3904	978
$\mathbf{6}$	Danio rerio (Zebrafish)	MYODI_DANRE	Myoblast determination protein I homolog (Myogenic factor I)	Q90477	893
$\mathbf{7}$	Branchiostoma belcheri (Amphioxus)	Q8IU24_BRABE	MyoD-related	Q8IU24	428
$\mathbf{8}$	Drosophila melanogaster (Fruit fly)	MYOD_DROME	Myogenic-determination protein (Protein nautilus) (dMyd)	P228I6	368
$\mathbf{9}$	Caenorhabditis elegans	LIN32_CAEEL	Protein lin-32 (Abnormal cell lineage protein 32)	QI0574	II8
$\mathbf{I 0}$	Homo sapiens (Human)	SYFM_HUMAN	Phenylalanyl-tRNA synthetase, mitochondrial	O95363	56

http://www.rcsb.org/pdb/explore/imol.do?structureld= | MDY\&bionumber= |

Full pairwise score table, reordered

\#\# hsMYOD mmMYOD ggMYOD xlMYOD drMYOD bbQ8IU dmMYOD hsTAL1 eLIN32 hsSYFM

| \#\# | P15172 | P10085 | P16075 | P13904 | Q90477 | Q8IU24 | P22816 | P17542 | Q10574 | 095363 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# P15172 | 1709 | 1500 | 1020 | 978 | 893 | 428 | 368 | 143 | 118 | 56 |
| \#\# P10085 | 1500 | 1702 | 1043 | 1002 | 925 | 440 | 367 | 128 | 118 | 52 |
| \#\# P16075 | 1020 | 1043 | 1594 | 1147 | 1093 | 448 | 414 | 129 | 120 | 61 |
| \#\# P13904 | 978 | 1002 | 1147 | 1541 | 1104 | 450 | 410 | 128 | 120 | 72 |
| \#\# Q90477 | 893 | 925 | 1093 | 1104 | 1479 | 449 | 410 | 112 | 117 | 62 |
| \#\# Q8IU24 | 428 | 440 | 448 | 450 | 449 | 1215 | 446 | 144 | 125 | 45 |
| \#\# P22816 | 368 | 367 | 414 | 410 | 410 | 446 | 1746 | 123 | 124 | 74 |
| \#\# P17542 | 143 | 128 | 129 | 128 | 112 | 144 | 123 | 1731 | 156 | 66 |
| \#\# Q10574 | 118 | 118 | 120 | 120 | 117 | 125 | 124 | 156 | 746 | 67 |
| \#\# 095363 | 56 | 52 | 61 | 72 | 62 | 45 | 74 | 66 | 67 | 2420 |

species - hs,mm, gg=chick, cl=frog, bb=amphioxus, fly, elegans

Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Given: independent samples $x_{1}, x_{2}, \ldots, x_{n}$ from a parametric distribution $f(x \mid \theta)$
Goal: estimate $\theta . \quad \begin{aligned} & \text { Not formally "conditional probability" } \\ & \text { but the notation is convenient... }\end{aligned}$
E.g.: Given sample HHTTTTTHTHTTTHH of (possibly biased) coin flips, estimate

$$
\theta=\text { probability of Heads }
$$

$f(x \mid \theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

(For Discrete Distributions)

$P(x \mid \theta)$: Probability of event x given model θ
Viewed as a function of x (fixed θ), it's a probability

$$
\text { E.g., } \Sigma_{x} P(x \mid \theta)=1
$$

Viewed as a function of θ (fixed x), it's called likelihood
E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; relative values are the focus.
E.g., if $\theta=$ prob of heads in a sequence of coin flips then

P(HHTHH | .6) > P(HHTHH | .5),
l.e., event HHTHH is more likely when $\theta=.6$ than $\theta=.5$

And what θ make HHTHH most likely?

Likelihood Function

P(HHTHH| θ): Probability of HHTHH, given $P(H)=\theta$:

θ	$\theta^{4}(\mathrm{I}-\theta)$
0.2	0.0013
0.5	0.0313
0.8	0.0819
0.95	0.0407

Maximum Likelihood Parameter Estimation

(For Discrete Distributions)
One (of many) approaches to param. est. Likelihood of (indp) observations $x_{1}, x_{2}, \ldots, x_{n}$

$$
\begin{equation*}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) \tag{*}
\end{equation*}
$$

As a function of θ, what θ maximizes the likelihood of the data actually observed?
Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta)=0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta)=0$
$\left(^{*}\right)$ In general, (discrete) likelihood is the joint pmf; product form follows from independence

Example I

n independent coin flips, $x_{1}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, $n_{।}$ heads, $n_{0}+n_{I}=n ; \theta=$ probability of heads

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=(1-\theta)^{n_{0}} \theta^{n_{1}} \\
& \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=n_{0} \log (1-\theta)+n_{1} \log \theta \\
& \frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta} \\
& \text { Setting to zero and solving: } \\
& \hat{\theta}=\frac{n_{1}}{n} \\
& \text { Observed fraction of } \\
& \text { successes in sample is } \\
& \text { MLE of success } \\
& \text { probability in population }
\end{aligned}
$$

(Also verify it's max, not min, \& not better on boundary)

Likelihood

(For Continuous Distributions)

$\operatorname{Pr}\left(\right.$ any specific $\left.x_{i}\right)=0$, so "likelihood $=$ probability" won't work. Defn: "likelihood" of x_{1}, \ldots, x_{n} is their joint density; = (by indp) product of their marginal densities. (As usual, swap density for pmf.) Why sensible:
a) density captures all that matters: relative likelihood
b) desirable property: better model fit increases likelihood and

c) if density at x is $f(x)$, for any small $\delta>0$, the probability of a sample within $\pm \delta / 2$ of x is $\approx \delta f(x)$, so density really is capturing probability, and δ is constant wrt θ, so it just drops out of $\mathrm{d} / \mathrm{d} \theta \log L(\ldots)=0$.

Otherwise, MLE is just like discrete case: get likelihood, $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta)=0$

Parameter Estimation

Given: indp samples $x_{1}, x_{2}, \ldots, x_{n}$ from a parametric distribution $f(x \mid \theta)$, estimate: θ.
E.g.: Given n normal samples, estimate mean \& variance
$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$

$$
\theta=\left(\mu, \sigma^{2}\right)
$$

Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^{2}=1$

Observed Data

Which is more likely: (a) this?
 μ unknown, $\sigma^{2}=1$

Which is more likely: (b) or this?
 μ unknown, $\sigma^{2}=1$

Which is more likely: (c) or this?
 μ unknown, $\sigma^{2}=1$

Which is more likely: (c) or this?

μ unknown, $\sigma^{2}=1$
Looks good by eye, but how do I optimize my estimate of μ ?

Ex. 2: $x_{i} \sim N\left(\mu, \sigma^{2}\right), \sigma^{2}=1, \mu$ unknown

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{i}-\theta\right)^{2} / 2} \leftarrow \text { product of densities } \\
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\sum_{i=1}^{n}-\frac{1}{2} \ln (2 \pi)-\frac{\left(x_{i}-\theta\right)^{2}}{2} \\
\frac{d}{d \theta} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left(x_{i}-\theta\right)
\end{aligned}
$$

And verify it's max, not min \& not better on boundary

$$
\begin{array}{r}
=\left(\sum_{i=1}^{n} x_{i}\right)-n \theta=0 \\
\widehat{\theta}=\left(\sum_{i=1}^{n} x_{i}\right) / n=\bar{x}
\end{array}
$$

Sample mean is MLE of population mean

Ex3: I got data; a little birdie tells me it's normal (but does not tell me μ, σ^{2})

Observed Data

Which is more likely: (a) this?

μ, σ^{2} both unknown

Which is more likely: (b) or this?

μ, σ^{2} both unknown

Which is more likely: (c) or this?

μ, σ^{2} both unknown

Which is more likely: (d) or this?

μ, σ^{2} both unknown

Which is more likely: (d) or this?

 μ, σ^{2} both unknownLooks good by eye, but how do I optimize my estimates of $\mu \underline{\underline{\& \sigma^{2}}}$?

Ex 3: $x_{i} \sim N\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ both unknown

Ex. 3, (cont.)

$$
\begin{align*}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{i=1}^{n}-\frac{1}{2} \ln \left(2 \pi \theta_{2}\right)-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{2}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{i=1}^{n}-\frac{1}{2} \frac{2 \pi}{2 \pi \theta_{2}}+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}= \tag{0}\\
\hat{\theta}_{2} & =\left(\sum_{i=1}^{n}\left(x_{i}-\widehat{\theta}_{1}\right)^{2}\right) / n=\bar{s}^{2}
\end{align*}
$$

Sample variance is MLE of population variance

Ex. 3, (cont.)

$$
\begin{align*}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{i=1}^{n}-\frac{1}{2} \ln \left(2 \pi \theta_{2}\right)-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{2}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{i=1}^{n}-\frac{1}{2} \frac{2 \pi}{2 \pi \theta_{2}}+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}= \tag{0}\\
\hat{\theta}_{2} & =\left(\sum_{i=1}^{n}\left(x_{i}-\widehat{\theta}_{1}\right)^{2}\right) / n=\bar{s}^{2}
\end{align*}
$$

A consistent, but biased estimate of population variance. /(An example of overfitting.) Unbiased estimate is:

le., $\lim _{n \rightarrow \infty}$
= correct

$$
\widehat{\theta}_{2}^{\prime}=\sum_{i=1}^{n} \frac{\left(x_{i}-\widehat{\theta}_{1}\right)^{2}}{n-1}
$$

Moral: MLE is a great idea, but not a magic bullet

MLE Summary

MLE is one way to estimate parameters from data You choose the form of the model (normal, binomial, ...) Math chooses the values) of parameter (s)
Defining the "Likelihood Function" (based on the pmf or pdf of the model) is often the critical step; the math/algorithms to optimize it are generic

Often simply $(\mathrm{d} / \mathrm{d} \theta)(\log$ Likelihood $(\mathrm{data} \mid \theta))=0$
Has the intuitively appealing property that the parameters maximize the likelihood of the observed data; basically just assumes your sample is "representative"

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event
Often, but not always, MLE has other desirable properties like being unbiased, or at least consistent

Conditional Probability \&

Bayes Rule

Conditional probability of E given F: probability that E occurs given that F has occurred.
"Conditioning on F"

Written as $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$

$P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
$P(E F)=P(E \mid F) P(F)$
E and F are events in the sample space S

$$
E=E F \cup E F c
$$

$$
\begin{gathered}
E F \cap E F c=\varnothing \\
\Rightarrow P(E)=P(E F)+P(E F c)
\end{gathered}
$$

Bayes Theorem

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Proof:

$$
P(F \mid E)=\frac{P(E F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E)}
$$

The "EM" Algorithm

The Expectation-Maximization Algorithm (for a Two-Component Mixture)

Previously: How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ,
σ that maximize the likelihood of the observed data.

We're not always so lucky...

More Complex Example

This?

Or this?
(A modeling decision, not a math problem..., but if the later, what math?)

A Living Histogram

male and female genetics students, University of Connecticut in 1996
http://mindprod.com/igloss/histogram.html

2 Coins:A Binomial Mixture

One fair coin $(P(H)=I / 2)$, and one biased coin $(p(H)=p$, fixed but unknown)

For $\mathrm{i}=\mathrm{I}, 2, \ldots, \mathrm{n}$:
pick a coin at random, flip it 10 times
record $x_{i}=\#$ of heads
What is MLE for p ?
Expect histogram of x_{i} to look like:

EM as Chicken vs Egg

Hidden Data: let $z_{i}=I$ if x_{i} was from biased coin, else 0

- IF I knew z_{i}, I could estimate p (easy: just use x_{i} s.t. $z_{i}=1$)
- IF I knew p, I could estimate z_{i}

(E.g., if $p=.8, x_{i} \geq 8$ implies z_{i} more likely I; ... but ... $x_{i} \leq 5$ implies z_{i} more likely 0 ; not clear-cut between, but uncertainty is quantifiable.)

The "E-M Algorithm": iterate until convergence:
E-step: given (estimated) p, (re)-estimate z's
M-step: given (estimated) z's, (re)-estimate p

$$
E\left[z_{i}\right]=\operatorname{Pr}\left(z_{i}=1 \mid x_{i}\right)
$$

$$
=\frac{\operatorname{Pr}\left(x_{i} \mid z_{i}=1\right) \operatorname{Pr}\left(z_{i}=1\right)}{\operatorname{Pr}\left(x_{i} \mid z_{i}=1\right) \operatorname{Pr}\left(z_{i}=1\right)+\operatorname{Pr}\left(x_{i} \mid z_{i}=0\right) \operatorname{Pr}\left(z_{i}=0\right)}
$$

$$
=\frac{\binom{10}{x_{i}} \cdot p^{x_{i}}(1-p)^{10-x_{i}} \cdot \frac{1}{2}}{\binom{10}{x_{i}} \cdot p^{x_{i}}(1-p)^{10-x_{i}} \cdot \frac{1}{2}+\binom{10}{x_{i}} \cdot\left(\frac{1}{2}\right)^{10} \cdot \frac{1}{2}}
$$

$$
=\frac{p^{x_{i}}(1-p)^{10-x_{i}}}{p^{x_{i}}(1-p)^{10-x_{i}}+2^{-10}}
$$

Math-Hacking the "if "

Let $b(x \mid p)=$ binomial prob of x heads in 10 flips when $p(H)=p$
As above, $z=I$ if x was biased, else 0
Then likelihood of x is

$$
L(x, z \mid p)=\text { "if } z==I \text { then } b(x \mid p) \text { else } b(x \mid 1 / 2) "
$$

Is there a smoother way? Especially, a differentiable way?
Yes! Idea \#I:

$$
L(x, z \mid p)=z \cdot b(x \mid p)+(\mid-z) \cdot b(x \mid 1 / 2)
$$

Better still, idea \#2:

$$
L(x, z \mid p)=b(x \mid p)^{z} \cdot b\left(\left.x\right|^{1 / 2}\right)^{(1-z)}
$$

The M-Step

$$
L(\vec{x}, \vec{z} \mid \theta)=C \prod_{i=1}^{n}\left(\theta^{x_{i}}(1-\theta)^{10-x_{i}}\right)^{z_{i}}, \text { where } C=\prod_{i=1}^{n}\binom{10}{x_{i}}\left(\frac{1}{2^{10}}\right)^{1-z_{i}}
$$

$$
E[\log L(\vec{x}, \vec{z} \mid \theta)]=E\left[\log C+\sum_{i=1}^{n} z_{i}\left(x_{i} \log \theta+\left(10-x_{i}\right) \log (1-\theta)\right)\right]
$$

$$
=E[\log C]+\sum_{i=1}^{n} E\left[z_{i}\right]\left(x_{i} \log \theta+\left(10-x_{i}\right) \log (1-\theta)\right)
$$

$\frac{d}{d \theta} E[\log L(\vec{x}, \vec{z} \mid \theta)]=0+\sum_{i=1}^{n} E\left[z_{i}\right]\left(\frac{x_{i}}{\theta}-\frac{10-x_{i}}{1-\theta}\right)$
Set to zero and solve, using $E\left[z_{i}\right]=\widehat{z_{i}}$ from E-step. Result (after some algebra):

$$
\widehat{\theta}=\frac{\sum_{i=1}^{n} \widehat{z_{i}} \cdot x_{i}}{\sum_{i=1}^{n} \widehat{z_{i}} \cdot 10}
$$

Intuitively sensible: the estimated fraction of heads from the biased coin is the observed fraction of heads seen overall, after weighting by the probability that each observation was indeed from the biased coin.

Suggested exercise(s)
Redo the math assuming both coins are biased (but unequally)

Write code to implement either version
Or a spreadsheet, with "fill down" to do a few iterations
Even in the I-coin-biased version, there may be multiple local maxima (e.g., consider histogram with a small peak at .25 and large ones at .5 \& .8) Does your alg get stuck at local max? How often? Does random restart pragmatically fix this?

EM for a Gaussian Mixture

I have presented the Gaussian mixture example in other courses. I will NOT lecture on it in 427, but l'll leave the slides (46-58) here in case you are interested in seeing another example in detail. Happy to discuss in office hours.

Gaussian Mixture Models / Model-based Clustering

Parameters θ
means
variances
mixing parameters τ_{1}
μ_{1}
μ_{2}
$\sigma_{1}^{2} \quad \sigma_{2}^{2}$
$\tau_{2}=1-\tau_{1}$
P.D.F. $\xrightarrow[\text { separately }]{\longrightarrow} f\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) \quad f\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)$

$$
\tau_{1} f\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)+\tau_{2} f\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)
$$

Likeli- $\int L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}\right)$

$$
=\prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f\left(x_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
$$

A What-If Puzzle

Likelihood

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots,\right. & x_{n} \mid \overbrace{\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}}) \\
& =\prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f\left(x_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
\end{aligned}
$$

Messy: no closed form solution known for finding θ maximizing L

But what if we knew the
hidden data?

$$
z_{i j}= \begin{cases}1 & \text { if } x_{i} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

EM as Egg vs Chicken

IF parameters θ known, could estimate z_{ij} E.g., $\left|x_{i}-\mu_{1}\right| / \sigma_{1} \gg\left|x_{i}-\mu_{2}\right| / \sigma_{2} \Rightarrow P\left[z_{i l}=1\right]$ < $\left[z_{i 2}=1\right]$

IF z_{ij} known, could estimate parameters θ
E.g., only points in cluster 2 influence μ_{2}, σ_{2}

But we know neither; (optimistically!) iterate:
E-step: calculate expected z_{i}, given parameters
M-step: calculate "MLE" of parameters, given $E\left(z_{i j}\right)$
Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]<.5$, pretend $\mathrm{z}_{\mathrm{ij}}=0 ; \mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]>.5$, pretend it's I
I.e., classify points as component I or 2

Now recalc θ, assuming that partition (standard MLE) Then recalc $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$, assuming that θ Then re-recalc θ, assuming new $\mathrm{E}\left[\mathrm{Z}_{\mathrm{ij}}\right]$, etc., etc.
"K-means "K-means
clustering,"
essentially "K-means
"Full EM" is slightly more involved, (to account for uncertainty in classification) but this is the crux.
Another contrast: HMM parameter estimation via "Viterbi" vs "Baum-Welch" training. In both, "hidden data" is "which state was it in at each step?" Viterbi is like E-step in classification EM: it makes a single state prediction. B-W is full EM: it captures the uncertainty in state prediction, too. For either, M-step maximizes HMM emission/ transition probabilities, assuming those fixed states (Viterbi) / uncertain states (B-W).

Full EM

x_{i} 's are known; θ unknown. Goal is to find MLE θ of:

$$
L\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Would be easy if $z_{i j}$'s were known, i.e., consider:

$$
L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right)
$$

But $z_{i j}$'s aren't known.
Instead, maximize expected likelihood of visible data

$$
E\left(L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right)\right)
$$

where expectation is over distribution of hidden data ($z_{i j}$'s)
I.e., average over possible, but hidden $z_{i j}$'s

The E-step: Find $E\left(z_{i j}\right)$, i.e., $P\left(z_{i j}=1\right)$

Assume θ known \& fixed
A (B): the event that x_{i} was drawn from $f_{l}\left(f_{2}\right)$
D: the observed datum x_{i}
Expected value of z_{i} is $\mathrm{P}(\mathrm{A} \mid \mathrm{D})$

$$
\left.\begin{array}{rl}
E\left[z_{i l}\right]=P(A \mid D) & =\frac{P(D \mid A) P(A)}{P(D)} \\
P(D) & =P(D \mid A) P(A)+P(D \mid B) P(B) \\
& =f_{1}\left(x_{i} \mid \theta_{1}\right) \tau_{1}+f_{2}\left(x_{i} \mid \theta_{2}\right) \tau_{2}
\end{array}\right\} \begin{gathered}
\text { Repeat } \\
\text { for } \\
\text { each } \\
\mathrm{z}_{\mathrm{ij},}
\end{gathered}
$$

Complete Data Likelihood

Recall:

$$
z_{1 j}= \begin{cases}1 & \text { if } x_{1} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

so, correspondingly,

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)= \begin{cases}\tau_{1} f_{1}\left(x_{1} \mid \theta\right) & \text { if } z_{11}=1 \\ \tau_{2} f_{2}\left(x_{1} \mid \theta\right) & \text { otherwise }\end{cases}
$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=z_{11} \cdot \tau_{1} f_{1}\left(x_{1} \mid \theta\right)+z_{12} \cdot \tau_{2} f_{2}\left(x_{1} \mid \theta\right)
$$

Idea 2 (Better):

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=\left(\tau_{1} f_{1}\left(x_{1} \mid \theta\right)\right)^{z_{11}} \cdot\left(\tau_{2} f_{2}\left(x_{1} \mid \theta\right)\right)^{z_{12}}
$$

M-step:

Find θ maximizing $\mathrm{E}(\log ($ Likelihood $))$

(For simplicity, assume $\sigma_{1}=\sigma_{2}=\sigma ; \tau_{1}=\tau_{2}=\tau=0.5$)

$$
L(\vec{x}, \vec{z} \mid \theta)=\prod_{i=1}^{n} \frac{\tau}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\sum_{j=1}^{2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
$$

$$
\begin{aligned}
E[\log L(\vec{x}, \vec{z} \mid \theta)] & =E\left[\sum_{i=1}^{n}\left(\log \tau-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{j=1}^{2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)\right] \\
\text { wrt dist of } z_{\mathrm{i}} & =\sum_{i=1}^{n}\left(\log \tau-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{j=1}^{2} E\left[z_{i j}\right] \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Find θ maximizing this as before, using $E\left[z_{i j}\right]$ found in E-step. Result: $\mu_{j}=\sum_{i=1}^{n} E\left[z_{i j}\right] x_{i} / \sum_{i=1}^{n} E\left[z_{i j}\right]$ (intuit: avg, weighted by subpop prob)

M-step: calculating mu's

$$
\mu_{j}=\sum_{i=1}^{n} E\left[z_{i j}\right] x_{i} / \sum_{i=1}^{n} E\left[z_{i j}\right]
$$

In words: μ_{j} is the average of the observed x_{i} 's, weighted by the probability that x_{i} was sampled from component j.

								row sum	avg
	$\mathrm{E}\left[\mathrm{z}_{i 1}\right]$	0.99	0.98	0.7	0.2	0.03	0.01	2.91	
	$\mathrm{E}\left[\mathrm{zi}_{2}\right]$	0.01	0.02	0.3	0.8	0.97	0.99	3.09	
	X_{i}	9	10	11	19	20	21	90	15
	$\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right] \mathrm{x}_{\mathrm{i}}$	8.9	9.8	7.7	3.8	0.6	0.2	31.02	10.66
	$\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right] \mathrm{x}_{\mathrm{i}}$	0.1	0.2	3.3	15.2	19.4	20.8	58.98	19.09

2 Component Mixture

$$
\sigma_{1}=\sigma_{2}=1 ; \tau=0.5
$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	211		5.11E-12		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
$\times 2$	-5	221		$2.61 \mathrm{E}-23$		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
x3	-4	231		$1.33 \mathrm{E}-34$		$9.98 \mathrm{E}-01$		$1.00 \mathrm{E}+00$	
x4	0	241		$9.09 \mathrm{E}-80$		$1.52 \mathrm{E}-08$		$4.11 \mathrm{E}-03$	
x5	4	251		$6.19 \mathrm{E}-125$		5.75E-19		2.64E-18	
x6	5	261		3.16E-136		1.43E-21		4.20E-22	
x7	6	271		$1.62 \mathrm{E}-147$		3.53E-24		6.69E-26	

Essentially converged in 2 iterations
$\Rightarrow \Rightarrow \quad$ (Excel spreadsheet on course web)

EM Summary

Fundamentally, maximum likelihood parameter estimation; broader than just these examples
Useful if $0 / I$ hidden data, and if analysis would be more tractable if $0 / I$ hidden data z were known

Iterate:
E-step: estimate $E(z)$ for each z, given θ M-step: estimate θ maximizing E[log likelihood] given $E[z]$ [where "E[logL]" is wrt random $z \sim E[z]=p(z=1)]$

EM Issues

Under mild assumptions (e.g., DEKM sect II.6), EM is guaranteed to increase likelihood with every E-M iteration, hence will converge.
But it may converge to a local, not global, max. (Recall the 4-bump surface...)
Issue is intrinsic (probably), since EM is often applied to NP-hard problems (including clustering, above and motif-discovery, soon)
Nevertheless, widely used, often effective, esp. with random restarts

