Suffix arrays

Ben Langmead

You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com) and tell me briefly how you’re using them. For original Keynote files, email me.
Suffix array

T = abaaba

As with suffix tree, T is part of index

$SA(T) = \begin{array}{c|c}
6 & $ \\
5 & a $ \\
2 & a a b a $ \\
3 & a b a $ \\
0 & a b a a b a $ \\
4 & b a $ \\
1 & b a a b a $
\end{array}$

$m + 1$ integers

Suffix array of T is an array of integers in $[0, m]$ specifying the lexicographic order of T's suffixes
Suffix array

$O(m)$ space, same as suffix tree. Is constant factor smaller?

32-bit integer can distinguish characters in the human genome, so suffix array is ~12 GB, smaller than MUMmer’s 47 GB suffix tree.
Suffix array: querying

Is P a substring of T?

1. For P to be a substring, it must be a prefix of ≥ 1 of T's suffixes

2. Suffixes sharing a prefix are consecutive in the suffix array

Use binary search

<table>
<thead>
<tr>
<th>Index</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a b a a b a $</td>
</tr>
<tr>
<td>1</td>
<td>b a a b a $</td>
</tr>
<tr>
<td>2</td>
<td>a a b a $</td>
</tr>
<tr>
<td>3</td>
<td>a b a $</td>
</tr>
<tr>
<td>4</td>
<td>b a $</td>
</tr>
<tr>
<td>5</td>
<td>a $</td>
</tr>
<tr>
<td>6</td>
<td>$</td>
</tr>
</tbody>
</table>
Suffix array: binary search

Python has `bisect` module for binary search

`bisect.bisect_left(a, x)`: Leftmost offset where we can insert `x` into `a` to maintain sorted order. `a` is already sorted!

`bisect.bisect_right(a, x)`: Like `bisect_left`, but returning `rightmost` instead of leftmost offset

```python
from bisect import bisect_left, bisect_right

a = [1, 2, 3, 3, 3, 4, 5]
print(bisect_left(a, 3), bisect_right(a, 3)) # output: (2, 5)

a = [2, 4, 6, 8, 10]
print(bisect_left(a, 5), bisect_right(a, 5)) # output: (2, 2)
```

Python example: http://nbviewer.ipython.org/6753277
Suffix array: binary search

We can straightforwardly use binary search to find a range of elements in a sorted list that equal some query:

```python
from bisect import bisect_left, bisect_right
strls = ['a', 'awkward', 'awl', 'awls', 'axe', 'axes', 'bee']

# Get range of elements that equal query string 'awl'
st, en = bisect_left(strls, 'awl'), bisect_right(strls, 'awl')
print(st, en)  # output: (2, 3)
```

Python example: http://nbviewer.ipython.org/6753277
Suffix array: binary search

Can also use binary search to find a range of elements in a sorted list with some query as a *prefix*:

```python
from bisect import bisect_left, bisect_right

strls = ['a', 'awkward', 'awl', 'awls', 'axe', 'axes', 'bee']

# Get range of elements with 'aw' as a prefix
st, en = bisect_left(strls, 'aw'), bisect_left(strls, 'ax')

print(st, en)  # output: (1, 4)
```

Python example: http://nbviewer.ipython.org/6753277
Suffix array: binary search

We can do the same thing for a sorted list of suffixes:

```python
from bisect import bisect_left, bisect_right

t = 'abaaba$
suffixes = sorted([t[i:] for i in xrange(len(t))])

st, en = bisect_left(suffixes, 'aba'),
        bisect_left(suffixes, 'abb')

print(st, en)  # output: (3, 5)
```

Python example: http://nbviewer.ipython.org/6753277
Suffix array: querying

Is \(P \) a substring of \(T \)?

Do binary search, check whether \(P \) is a prefix of the suffix there

How many times does \(P \) occur in \(T \)?

Two binary searches yield the range of suffixes with \(P \) as prefix; size of range equals \# times \(P \) occurs in \(T \)

Worst-case time bound?

\(O(\log_2 m) \) bisections, \(O(n) \) comparisons per bisection, so \(O(n \log m) \)
Suffix array: querying

Contrast suffix array: $O(n \log m)$ with suffix tree: $O(n)$

But we can improve bound for suffix array...
Consider further: binary search for suffixes with P as a prefix

Assume there’s no $\$$ in P. So P can’t be equal to a suffix.

Initialize $l = 0$, $c = \text{floor}(m/2)$ and $r = m$ (just past last elt of SA)

```
  "left"   "center"   "right"
```

Notation: We’ll use use $SA[l]$ to refer to the suffix corresponding to suffix-array element l. We could write $T[SA[l]:]$, but that’s too verbose.

Throughout the search, invariant is maintained:

$$SA[l] < P < SA[r]$$
Suffix array: querying

Throughout search, invariant is maintained:

\[\text{SA}[l] < P < \text{SA}[r] \]

What do we do at each iteration?

Let \(c = \text{floor}(\frac{r + l}{2}) \)

If \(P < \text{SA}[c] \), either stop or let \(r = c \) and iterate

If \(P > \text{SA}[c] \), either stop or let \(l = c \) and iterate

When to stop?

\(P < \text{SA}[c] \) and \(c = l + 1 \) - answer is \(c \)

\(P > \text{SA}[c] \) and \(c = r - 1 \) - answer is \(r \)
Suffix array: querying

```python
def binarySearchSA(t, sa, p):
    assert t[-1] == '$'  # t already has terminator
    assert len(t) == len(sa)  # sa is the suffix array for t
    if len(t) == 1: return 1
    l, r = 0, len(sa)  # invariant: sa[l] < p < sa[r]
    while True:
        c = (l + r) // 2
        # determine whether p < T[sa[c]:] by doing comparisons
        # starting from left-hand sides of p and T[sa[c]:]
        plt = True  # assume p < T[sa[c]:] until proven otherwise
        i = 0
        while i < len(p) and sa[c]+i < len(t):
            if p[i] < t[sa[c]+i]:
                break  # p < T[sa[c]:]
            elif p[i] > t[sa[c]+i]:
                plt = False
                break  # p > T[sa[c]:]
            i += 1  # tied so far
        if plt:
            if c == l + 1: return c
            r = c
        else:
            if c == r - 1: return r
            l = c
```

loop iterations ≈ length of Longest Common Prefix (LCP) of P and SA[c]

If we already know something about LCP of P and SA[c], we can save work.

Python example: http://nbviewer.ipython.org/6765182
Suffix array: querying

Say we’re comparing P to $SA[c]$ and we’ve already compared P to $SA[l]$ and $SA[r]$ in previous iterations.

More generally:

$$\text{LCP}(P, SA[c]) \geq \min(\text{LCP}(P, SA[l]), \text{LCP}(P, SA[r]))$$

We can skip character comparisons.

<table>
<thead>
<tr>
<th>SA(T)</th>
<th>l</th>
<th>c</th>
<th>r</th>
</tr>
</thead>
</table>

“Length of the LCP”
def binarySearchSA_lcp1(t, sa, p):
 if len(t) == 1: return 1
 l, r = 0, len(sa) # invariant: sa[l] < p < sa[r]
 lcp lp, lcp rp = 0, 0
 while True:
 c = (l + r) // 2
 plt = True
 i = min(lcp lp, lcp rp)
 while i < len(p) and sa[c]+i < len(t):
 if p[i] < t[sa[c]+i]:
 break # p < T[sa[c]:]
 elif p[i] > t[sa[c]+i]:
 plt = False
 break # p > T[sa[c]:]
 i += 1 # tied so far
 if plt:
 if c == l + 1: return c
 r = c
 lcp rp = i
 else:
 if c == r - 1: return r
 l = c
 lcp lp = i

Worst-case time bound is still $O(n \log m)$, but we're closer

Python example: http://nbviewer.ipython.org/6765182
Suffix array: querying

Take an iteration of binary search:

Say we know $\text{LCP}(P, SA[l])$, and $\text{LCP}(SA[c], SA[l])$.

Say we know $\text{LCP}(P, SA[l])$, and $\text{LCP}(SA[c], SA[l])$.

\begin{align*}
\text{SA(T)} & \quad c \\
\text{SA} & \quad l \\
P & \quad r
\end{align*}
Suffix array: querying

Three cases:

\[\text{LCP}(\text{SA}[c], \text{SA}[l]) > \text{LCP}(P, \text{SA}[l]) \]

\[\text{LCP}(\text{SA}[c], \text{SA}[l]) < \text{LCP}(P, \text{SA}[l]) \]

\[\text{LCP}(\text{SA}[c], \text{SA}[l]) = \text{LCP}(P, \text{SA}[l]) \]
Suffix array: querying

Case 1:

Next char of P after the $\text{LCP}(P, \text{SA}[I])$ must be greater than corresponding char of $\text{SA}[c]$

$P > \text{SA}[c]$
Suffix array: querying

Case 2:

Next char of $SA[c]$ after $LCP(SA[c], SA[l])$ must be greater than corresponding char of P

$P < SA[c]$

$LCP(SA[c], SA[l]) < LCP(P, SA[l])$
Case 3:

Must do further character comparisons between P and $SA[c]$

Each such comparison either:

(a) mismatches, leading to a bisection

(b) matches, in which case $\text{LCP}(P, SA[c])$ grows

\[
\text{LCP}(SA[c], SA[l]) = \text{LCP}(P, SA[l])
\]
Suffix array: querying

We improved binary search on suffix array from $O(n \log m)$ to $O(n + \log m)$ using information about Longest Common Prefixes (LCPs).

LCPs between P and suffixes of T computed during search, LCPs among suffixes of T computed offline

LCP($SA[c], SA[l]$) > LCP($P, SA[l]$)
Bisect right!

LCP($SA[c], SA[l]$) < LCP($P, SA[l]$)
Bisect left!

LCP($SA[c], SA[l]$) = LCP($P, SA[l]$)
Compare some characters, then bisect!
Suffix array: LCPs

How to pre-calculate LCPs for every \((l, c)\) and \((c, r)\) pair in the search tree?

Triples are \((l, c, r)\) triples

Example where \(m = 16\) (incl. \$) \quad \# search tree nodes = \(m - 1\)
Suffix array: LCPs

Suffix Array (SA) has \(m \) elements

Define LCP1 array with \(m - 1 \) elements such that \(LCP[i] = LCP(SA[i], SA[i+1]) \)

<table>
<thead>
<tr>
<th>SA(T):</th>
<th>LCP1(T):</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 $</td>
<td>0</td>
</tr>
<tr>
<td>5 a $</td>
<td>1</td>
</tr>
<tr>
<td>2 a a a $</td>
<td>1</td>
</tr>
<tr>
<td>3 a b a $</td>
<td>3</td>
</tr>
<tr>
<td>0 a b a a b a $</td>
<td>0</td>
</tr>
<tr>
<td>4 b a $</td>
<td>2</td>
</tr>
<tr>
<td>1 b a b a $</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{LCP} (SA[0], SA[1]) \)
Suffix array: LCPs

LCP2[i] = LCP(SA[i], SA[i+1], SA[i+2])

In fact, LCP of a range of consecutive suffixes in SA equals the minimum LCP1 among adjacent pairs in the range

LCP1 is a building block for other useful LCPs
Suffix array: LCPs

Good time to calculate LCP1 it is *at the same time* as we *build* the suffix array, since putting the suffixes in order involves breaking ties after common prefixes.

SA(T):

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a $</td>
<td>a a b a $</td>
<td>a b a $</td>
<td>a b a a b a $</td>
<td>b a $</td>
<td>b a a b a $</td>
</tr>
</tbody>
</table>

LCP1(T):

| 0 | 1 | 1 | 3 | 0 | 2 |

Suffix array: LCPs

$T = \text{abracadabracada}$
Suffix array: LCPs

\[T = \text{abracadabracada} \]
Suffix array: LCPs

T = abracadabracada
Suffix array: LCPs

T = abracadabracada

<table>
<thead>
<tr>
<th>SA(T):</th>
<th>15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP1(T):</td>
<td>0 1 8 1 5 1 3 0 7 0 4 0 2 0 6</td>
</tr>
</tbody>
</table>

Diagram showing suffix array and longest common prefix array.
Suffix array: LCPs

$T = \text{abracadabracada}$

$\text{min(0, 1)} = \min(0, 1) = 0$

$\text{SA(T)}: 15 \ 14 \ 7 \ 0 \ 10 \ 3 \ 12 \ 5 \ 8 \ 1 \ 11 \ 4 \ 13 \ 6 \ 9 \ 2$

$\text{LCP1(T)}: 0 \ 1 \ 8 \ 1 \ 5 \ 1 \ 3 \ 0 \ 7 \ 0 \ 4 \ 0 \ 2 \ 0 \ 6 \ 15$
Suffix array: LCPs

T = abracadabracada

<table>
<thead>
<tr>
<th>SA(T):</th>
<th>15</th>
<th>14</th>
<th>7</th>
<th>0</th>
<th>10</th>
<th>3</th>
<th>12</th>
<th>5</th>
<th>8</th>
<th>1</th>
<th>11</th>
<th>4</th>
<th>13</th>
<th>6</th>
<th>9</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP1(T):</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LCP_LC(T):</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LCP_CR(T):</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Suffix array: LCPs

T = abracadabracada
Suffix array: LCPs

Calculates (l, c) LCPs and (c, r) LCPs from LCP1 array. Returns
pair where first element is list of LCPs for (l, c) combos and
second is LCPs for (c, r) combos.

def precomputeLcps(lcp1):
 llcp, rlcp = [None] * len(lcp1), [None] * len(lcp1)
 lcp1 += [0]
 def precomputeLcpsHelper(l, r):
 if l == r-1: return lcp1[l]
 c = (l + r) // 2
 llcp[c-1] = precomputeLcpsHelper(l, c)
 rlcp[c-1] = precomputeLcpsHelper(c, r)
 return min(llcp[c-1], rlcp[c-1])
 precomputeLcpsHelper(0, len(lcp1))
 return llcp, rlcp

\(O(m)\) time and space

Python example: http://nbviewer.ipython.org/6783863
Suffix array: querying review

We saw 3 ways to query (binary search) the suffix array:

1. Typical binary search. Ignores LCPs. $O(n \log m)$.
2. Binary search with some skipping using LCPs between P and T's suffixes. Still $O(n \log m)$, but it can be argued it’s near $O(n + \log m)$ in practice.
 Gusfield: “Simple Accelerant”
3. Binary search with skipping using all LCPs, including LCPs among T’s suffixes. $O(n + \log m)$.
 Gusfield: “Super Accelerant”

How much space do they require?

1. $\sim m$ integers (SA)
2. $\sim m$ integers (SA)
3. $\sim 3m$ integers (SA, LCP_LC, LCP_CR)
Suffix array: performance comparison

<table>
<thead>
<tr>
<th></th>
<th>Super accelerant</th>
<th>Simple accelerant</th>
<th>No accelerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>python -O</td>
<td>68.78 s</td>
<td>69.80 s</td>
<td>102.71 s</td>
</tr>
<tr>
<td>pypy -O</td>
<td>5.37 s</td>
<td>5.21 s</td>
<td>8.74 s</td>
</tr>
<tr>
<td># character</td>
<td>99.5 M</td>
<td>117 M</td>
<td>235 M</td>
</tr>
<tr>
<td>comparisons</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching 500K 100-nt substrings to the ~ 5 million nt-long *E. coli* genome. Substrings drawn randomly from the genome.

Index building time not included
Suffix array: building

Given T, how to efficiently build T's suffix array?

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>5</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>a $</td>
<td>a a b a $</td>
<td>a b a $</td>
<td>a b a a b a $</td>
<td>b a $</td>
<td>b a a b a $</td>
</tr>
</tbody>
</table>

Diagram:

```
             6
            /   \
           /     \n         5       4
        /     \   /     \n       /       1 /       \n      ba       aba$ ba       aba$
                /   \     /   \    \
               /     \   /     \   \
              /       2 /       3   \
             aba$     baaba$ aba$     baaba$
                 /     \   /     \    \
                /       0 /       5   \
               /         \ /         \
              ba       $  ba       $ 
```


Idea: Build suffix tree, do a lexicographic depth-first traversal reporting leaf offsets as we go

Traverse $O(m)$ nodes and emit m integers, so $O(m)$ time assuming edges are already ordered
Suffix array: building LCP1

Can calculate LCP1 at the same time

Yes: on our way from one leaf to the next, record the shallowest "label depth" observed
Suffix array: SA and LCP from suffix tree: implementation

```python
def saLcp(self):
    # Return suffix array and an LCP1 array corresponding to this
    # suffix tree. self.root is root, self.t is the text.
    self.minSinceLeaf = 0
    sa, lcp1 = [], []
    def __visit(n):
        if len(n.out) == 0:
            # leaf node, record offset and LCP1 with previous leaf
            sa.append(len(self.t) - n.depth)
            lcp1.append(self.minSinceLeaf)
            # reset LCP1 to depth of this leaf
            self.minSinceLeaf = n.depth
        # visit children in lexicographical order
        for c, child in sorted(n.out.iteritems()):
            __visit(child)
            # after each child visit, perhaps decrease
            # minimum-depth-since-last-leaf value
            self.minSinceLeaf = min(self.minSinceLeaf, n.depth)
    __visit(self.root)
    return sa, lcp1[1:]
```

This is a member function from a SuffixTree class, the rest of which isn’t shown

Python example: http://nbviewer.ipython.org/6796858
Suﬃx array: building

Suﬃx trees are big. Given T, how do we eﬃciently build T's suﬃx array without first building a suﬃx tree?

<table>
<thead>
<tr>
<th>6</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>a $</td>
</tr>
<tr>
<td>2</td>
<td>a a b a $</td>
</tr>
<tr>
<td>3</td>
<td>a b a $</td>
</tr>
<tr>
<td>0</td>
<td>a b a a b a $</td>
</tr>
<tr>
<td>4</td>
<td>b a $</td>
</tr>
<tr>
<td>1</td>
<td>b a a b a $</td>
</tr>
</tbody>
</table>
Suffix array: sorting suffixes

One idea: Use your favorite sort, e.g., quicksort

```
  def quicksort(q):
    lt, gt = [], []
    if len(q) <= 1:
      return q
    for x in q[1:]:
      if x < q[0]:
        lt.append(x)
      else:
        gt.append(x)
    return quicksort(lt) + q[0:1] + quicksort(gt)
```

<table>
<thead>
<tr>
<th></th>
<th>a b a a b a $</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>b a a b a $</td>
</tr>
<tr>
<td>1</td>
<td>a a b a $</td>
</tr>
<tr>
<td>2</td>
<td>a b a $</td>
</tr>
<tr>
<td>3</td>
<td>b a $</td>
</tr>
<tr>
<td>4</td>
<td>a $</td>
</tr>
<tr>
<td>5</td>
<td>$</td>
</tr>
</tbody>
</table>

Expected time: $O(m^2 \log m)$

Not $O(m \log m)$ because a suffix comparison is $O(m)$ time
Suffix array: sorting suffixes

One idea: Use a sort algorithm that’s aware that the items being sorted are strings, e.g. “multikey quicksort”

<table>
<thead>
<tr>
<th>0</th>
<th>a b a a b a $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b a a b a $</td>
</tr>
<tr>
<td>2</td>
<td>a a b a $</td>
</tr>
<tr>
<td>3</td>
<td>a b a $</td>
</tr>
<tr>
<td>4</td>
<td>b a $</td>
</tr>
<tr>
<td>5</td>
<td>a $</td>
</tr>
<tr>
<td>6</td>
<td>$</td>
</tr>
</tbody>
</table>

Essentially $O(m^2)$ time

Suffix array: sorting suffixes

Another idea: Use a sort algorithm that’s aware that the items being sorted are all suffixes of the same string

Original suffix array paper suggested an $O(m \log m)$ algorithm

Other popular $O(m \log m)$ algorithms have been suggested

More recently $O(m)$ algorithms have been demonstrated!

And there are comparable advances with respect to LCP1
Suffix array: summary

Suffix array gives us index that is:

(a) Just m integers, with $O(n \log m)$ worst-case query time, but close to $O(n + \log m)$ in practice

or (b) $3m$ integers, with $O(n + \log m)$ worst case

(a) will often be preferable: index for entire human genome fits in ~ 12 GB instead of > 45 GB