CSE 427

Markov Models and Hidden Markov Models
Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome 1-23
Mostly, both copies of each gene are expressed
 E.g., A B O blood group defined by 2 alleles of 1 gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:
 • One X randomly inactivated in each cell
 • Choice maintained in daughter cells
Calico: a major coat color gene is on X
Reminder: Proteins “Read” DNA

E.g.:

1. Recognition helix
2. NH₂
3. COOH

(A)

Figure 7-19 Molecular Biology of the Cell 5/e (© Garland Science 2008)
MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They’re accessible, esp. in major groove.

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)
DNA Methylation

CpG - 2 adjacent nts, same strand
(not Watson-Crick pair; “p” mnemonic for the phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)
Same Pairing

Methyl-C alters major groove profile (TF binding), but not base-pairing, transcription or replication.
DNA Methylation—Why

In vertebrates, it generally silences transcription
 (Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to
 (a) turn off liver genes in kidney & vice versa,
 (b) remember that through subsequent divisions

How? One way:
 (a) Methylate genes, esp. promoters, to silence them
 (b) after ÷, DNA methyltransferases convert hemi- to fully-methylated
 (& deletion of methyltransferase is embryonic-lethal in mice)

Major exception: promoters of housekeeping genes
“CpG Islands”

Methyl-C mutates to T relatively easily

Net: CpG is less common than expected genome-wide:
\[f(\text{CpG}) < f(\text{C}) \times f(\text{G}) \]

BUT in some regions (e.g. active promoters), CpG remain unmethylated, so \(\text{CpG} \rightarrow \text{TpG} \) less likely there: makes “CpG Islands”; often mark gene-rich regions
CpG Islands

CpG Islands
- More CpG than elsewhere (say, CpG/GpC>50%)
- More C & G than elsewhere, too (say, C+G>50%)
- Typical length: few 100 to few 1000 bp

Questions
- Is a short sequence (say, 200 bp) a CpG island or not?
- Given long sequence (say, 10-100kb), find CpG islands?
Markov & Hidden Markov Models

References (see also online reading page):
Independence

A key issue: Previous models we’ve talked about assume *independence* of nucleotides in different positions - definitely unrealistic.
Markov Chains

A sequence x_1, x_2, \ldots of random variables is a k-th order Markov chain if, for all i, i^{th} value is independent of all but the previous k values:

$$P(x_i \mid x_1, x_2, \ldots, x_{i-1}) = P(x_i \mid x_{i-k}, x_{i-k+1}, \ldots, x_{i-1})$$

Example 1: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but $\downarrow \text{Pr}(G \text{ following } C)$

0^{th} order
1^{st} order
A Markov Model (1st order)

States: A, C, G, T
Emissions: corresponding letter
Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$
A Markov Model (1st order)

States: A, C, G, T

Emissions: corresponding letter

Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$

Begin/End states
Pr of emitting sequence x

\[x = x_1 \ x_2 \ldots \ x_n \]

\[P(x) = P(x_1, x_2, \ldots, x_n) \]

\[= P(x_1) \cdot P(x_2 | x_1) \cdots P(x_n | x_{n-1}, \ldots, x_1) \]

\[= P(x_1) \cdot P(x_2 | x_1) \cdots P(x_n | x_{n-1}) \]

\[= P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}} \]

\[= \prod_{i=0}^{n-1} a_{x_i, x_{i+1}} \quad \text{(with Begin state)} \]
Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.180</td>
<td>0.274</td>
<td>0.426</td>
<td>0.120</td>
</tr>
<tr>
<td>C</td>
<td>0.171</td>
<td>0.368</td>
<td>0.274</td>
<td>0.188</td>
</tr>
<tr>
<td>G</td>
<td>0.161</td>
<td>0.339</td>
<td>0.375</td>
<td>0.125</td>
</tr>
<tr>
<td>T</td>
<td>0.079</td>
<td>0.355</td>
<td>0.384</td>
<td>0.182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.300</td>
<td>0.205</td>
<td>0.285</td>
<td>0.210</td>
</tr>
<tr>
<td>C</td>
<td>0.322</td>
<td>0.298</td>
<td>0.078</td>
<td>0.302</td>
</tr>
<tr>
<td>G</td>
<td>0.248</td>
<td>0.246</td>
<td>0.298</td>
<td>0.208</td>
</tr>
<tr>
<td>T</td>
<td>0.177</td>
<td>0.239</td>
<td>0.292</td>
<td>0.292</td>
</tr>
</tbody>
</table>
Discrimination/Classification

Log likelihood ratio of CpG model vs background model

\[
S(x) = \log \frac{P(x|\text{model} +)}{P(x|\text{model} -)} = \sum_{i=1}^{L} \log \frac{a_{x_i-1x_i}^+}{a_{x_i-1x_i}^-} = \sum_{i=1}^{L} \beta_{x_i-1x_i}
\]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.740</td>
<td>0.419</td>
<td>0.580</td>
<td>-0.803</td>
</tr>
<tr>
<td>C</td>
<td>-0.913</td>
<td>0.302</td>
<td>1.812</td>
<td>-0.685</td>
</tr>
<tr>
<td>G</td>
<td>-0.624</td>
<td>0.461</td>
<td>0.331</td>
<td>-0.730</td>
</tr>
<tr>
<td>T</td>
<td>-1.169</td>
<td>0.573</td>
<td>0.393</td>
<td>-0.679</td>
</tr>
</tbody>
</table>

From DEKM
CpG Island Scores

Figure 3.2 Histogram of length-normalized scores.

From DEKM 20
Questions

Q1: Given a short sequence, is it more likely from feature model or background model? Above

Q2: Given a long sequence, where are the features in it (if any)

Approach 1: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.
Emphasis is “Which (hidden) state?” not “Which model?”
Hidden Markov Models
(HMMs; Claude Shannon, 1948)

States: \(1, 2, 3, \ldots\)
Paths: sequences of states \(\pi = (\pi_1, \pi_2, \ldots)\)
Transitions: \(a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)\)
Emissions: \(e_k(b) = P(x_i = b \mid \pi_i = k)\)

Observed data: emission sequence
Hidden data: state/transition sequence
The Occasionally Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped
<table>
<thead>
<tr>
<th>Rolls</th>
<th>Die</th>
<th>Viterbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3151162464464245311321631164152133625144543631656626566666</td>
<td>FFF</td>
<td>FFF</td>
</tr>
<tr>
<td>65116645313265124563666463163663162326455236266666625151631</td>
<td>LLLFF</td>
<td>LLLFF</td>
</tr>
<tr>
<td>222555441666566563564324364131513465146353411126414626253356</td>
<td>FFFFFFFFFLLLLLFFL</td>
<td>FFF</td>
</tr>
<tr>
<td>366163666466232534413661661163252562462255265252266435353336</td>
<td>LLLFF</td>
<td>LLLFF</td>
</tr>
<tr>
<td>233121625364414432335163243633665562466662632666612355245242</td>
<td>FFF</td>
<td>FFF</td>
</tr>
</tbody>
</table>

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: The prediction by the Viterbi algorithm is shown.

From DEKM 25
Inferring hidden stuff

Joint probability of a given path π & emission sequence x:

$$P(x, \pi) = a_{0, \pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i, \pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

- Most probable single path
 $$\pi^* = \arg \max_{\pi} P(x, \pi)$$

- Sequence of most probable states
 $$\hat{\pi}_i = \arg \max_{k} P(\pi_i = k \mid x)$$

Etc.
The Viterbi Algorithm: The most probable path

Viterbi finds: \(\pi^* = \arg\max_{\pi} P(x, \pi)\)

Possibly there are \(10^{99}\) paths of prob \(10^{-99}\)
 (If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants) dominate others; Viterbi finds that

Key problem: exponentially many paths \(\pi\)
Unrolling an HMM

Conceptually, sometimes convenient
Note exponentially many paths
Viterbi

\[v_l(i) = \text{probability of the most probable path} \]
\[\text{emitting } x_1, x_2, \ldots, x_i \text{ and ending in state } l \]

Initialize:

\[
v_l(0) = \begin{cases}
1 & \text{if } l = \text{Begin state} \\
0 & \text{otherwise}
\end{cases}
\]

General case:

\[
v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l})
\]
HMM Casino Example

HMM Parameters

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>F</th>
<th>p(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.52</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.60</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>F</td>
<td>0.17</td>
<td>0.83</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Show Viterbi: FALSE

<table>
<thead>
<tr>
<th>Rolls: 316664</th>
<th>3</th>
<th>1</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>L: 0.52</td>
<td>0.52 x 0.10 = 0.052</td>
<td>0.052 x 0.60 x 0.10 = 0.0031</td>
<td>0.0031 x 0.60 x 0.50 = 9.36E-04</td>
</tr>
<tr>
<td>B</td>
<td>Max = 0.0031</td>
<td>Max = 9.41E-04</td>
<td></td>
</tr>
<tr>
<td>F: 0.48</td>
<td>0.48 x 0.17 = 0.080</td>
<td>0.080 x 0.40 x 0.17 = 0.0035</td>
<td>0.0031 x 0.40 x 0.17 = 2.08E-04</td>
</tr>
<tr>
<td></td>
<td>Max = 0.0111</td>
<td>Max = 1.53E-03</td>
<td></td>
</tr>
</tbody>
</table>

Begin Transition Emission Previous Transition Emission Previous Transition Emission

(Excel spreadsheet on web; download & play…)
HMM Casino Example

(Excel spreadsheet on web; download & play...)
Viterbi Traceback

Above finds *probability* of best path
To find the path itself, trace *backward* to the state k attaining the max at each stage

$$v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l})$$
<table>
<thead>
<tr>
<th>Rolls</th>
<th>3151162464464245311321631164152133625144543631656626566666</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>FFFLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLL</td>
</tr>
<tr>
<td>Rolls</td>
<td>651166453126512456366646316366316232645523626666625151631</td>
</tr>
<tr>
<td>Die</td>
<td>LLLLLLFFFFFFFFFFFFFLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFLLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>LLLLLLFFFFFFFFFFFFFLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFLLL</td>
</tr>
<tr>
<td>Rolls</td>
<td>222555441666566563564324364131513465146353411126414626253356</td>
</tr>
<tr>
<td>Die</td>
<td>FFFFFFFFFLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLL</td>
</tr>
<tr>
<td>Rolls</td>
<td>3661636664662325344136616611632525624622552652522664353336</td>
</tr>
<tr>
<td>Die</td>
<td>LL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>LL</td>
</tr>
<tr>
<td>Rolls</td>
<td>233121625364414432335163243633665562466662632666612355245242</td>
</tr>
<tr>
<td>Die</td>
<td>FFLLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLL</td>
</tr>
</tbody>
</table>

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM 33
Most probable path ≠ Sequence of most probable states

Another example, based on casino dice again

Suppose \(p(\text{fair} \leftrightarrow \text{loaded}) \) transitions are \(10^{-99} \) and roll sequence is 1111166...666; then fair state is more likely all through 1’s & well into the run of 6’s, but eventually loaded wins, and the improbable F→L transitions make Viterbi = all L.

* = max prob

= Viterbi
Is Viterbi “best”?

Viterbi finds \(\pi^* = \arg \max_{\pi} P(x, \pi) \)

Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (i.e., Viterbi is not the only interesting answer.)
An HMM (unrolled)
Viterbi: best path to each state

Viterbi score: \[v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l}) \]

Viterbi path\(^R\): \[\text{back}_l(i + 1) = \arg \max_k (v_k(i) a_{k,l}) \]
The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

\[f_k(i) \triangleq P(x_1 \ldots x_i, \pi_i = k) \]

\[f_l(i + 1) = e_l(x_{i+1}) \sum_k f_k(i) a_{k,l} \]

\[P(x) = \sum_\pi P(x, \pi) = \sum_k f_k(n) a_{k,\text{end}} \]
The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

$$b_k(i) \triangleq P(x_{i+1} \cdots x_n | \pi_i = k)$$

$$b_k(i) = \sum_l a_{k,l} e_l(x_{i+1}) b_l(i + 1)$$

$$b_k(n) = a_{k,end}$$
In state k at step i?

$$P(x, \pi_i = k)$$

$$= P(x_1, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_n \mid x_1, \ldots, x_i, \pi_i = k)$$

$$= P(x_1, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_n \mid \pi_i = k)$$

$$= f_k(i) \cdot b_k(i)$$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$
Posterior Decoding, I

Alternative 1: what’s the most likely state at step i?

$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!
The Occasionally Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2
Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.
Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.
Posterior Decoding, II

Alternative 1: what’s most likely state at step i?

$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function $g(k)$ on states, what’s its expectation. E.g., what’s probability of “+” model in CpG HMM ($g(k)=1$ iff k is “+” state)?

$$G(i \mid x) = \sum_k P(\pi_i = k \mid x) \cdot g(k)$$
CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi:
Found 46 of 48
plus 121 “false positives”

Posterior Decoding:
same 2 false negatives
plus 236 false positives

Post-process:
46/48
67 false pos

Post-process: merge within 500; discard < 500

46/48
83 false pos
Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = \frac{\text{count of } k \rightarrow l \text{ transitions}}{\text{count of } k \rightarrow \text{anywhere transitions}}$$

$$e_k(b) = \ldots$$

If π hidden, then use EM:

given π, estimate θ; given θ estimate π; repeat
Viterbi Training

given π, estimate θ; given θ estimate π; repeat

Make initial estimates of parameters θ
Find Viterbi path π for each training sequence
Count transitions/emissions on those paths, getting new θ
Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used.
(Arguably good if you’re doing Viterbi decoding.)
Baum-Welch Training

EM: given θ, estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_l(i + 1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of $k \to l$ transitions $\hat{A}_{k,l}$ on set of seqs x^j

$$= \sum_{\text{training seqs } x^j} \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar
Log-odds (vs all F) per roll

True model 0.101 bits
300-roll est. 0.097 bits
30k-roll est. 0.100 bits
(NB: overestimated)

From DEKM 50
HMMs in Action: Pfam
http://pfam.sanger.ac.uk/

Proteins fall into families, both across & within species
 Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...
Identifying family very useful: suggests function, etc.
So, search & alignment are both important
Q. Why not just use Blast/Smith-Waterman?
A. There is more info in multiple examples
One very successful approach: profile HMMs
Alignment of 7 globins. A-H mark 8 alpha helices.

Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.

Could we have a profile (aka weight matrix) w/ indels?
Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

M_j: Match states (20 emission probabilities)
I_j: Insert states (Background emission probabilities)
D_j: Delete states (silent - no emission)

From DEKM 53
Silent States

Example: chain of states, can skip some

Problem: many parameters.

A solution: chain of “silent” states; fewer parameters (but less detailed control)

Algorithms: basically the same.
Using Profile HMM’s

- **Search**
 - Forward or Viterbi

- **Scoring**
 - Log likelihood (length adjusted)
 - Log odds vs background
 - Z scores from either

- **Alignment**
 - Viterbi

(next slides)
Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.
Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences
Pfam 25.0 (March 2011, 12273 families; covers ~75% of human proteins)
Pfam 27.0 (March 2013, 14831 families; ≈ 90%)
HMM Summary

Inference
- Viterbi – best single path (max of products)
- Forward – sum over all paths (sum of products)
- Backward – similar
- Posterior decoding

Model building
- Semi-supervised – typically fix architecture (e.g. profile HMM), then learn parameters
- Baum-Welch – training via EM and forward/backward (aka the forward/backward algorithm)
- Viterbi training – also “EM”, but Viterbi-based
Search:
 Viterbi or forward

Scoring:
 Odds ratio to background
 Z-score
 E-values, etc., too

Excellent tools available (SAM, HMMer, Pfam, …)

A very widely used tool for biosequence analysis