CSE 427
Autumn 2015
MLE, EM
MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
Outline

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm
Learning From Data: MLE

Maximum Likelihood Estimators
Parameter Estimation

Given: independent samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$

Goal: estimate θ.

E.g.: Given sample HHTTTTTTHTHTTTTHH of (possibly biased) coin flips, estimate

$$\theta = \text{probability of Heads}$$

$f(x|\theta)$ is the Bernoulli probability mass function with parameter θ
Likelihood

$P(x \mid \theta)$: Probability of event x given model θ

Viewed as a function of x (fixed θ), it’s a probability

E.g., $\sum_x P(x \mid \theta) = 1$

Viewed as a function of θ (fixed x), it’s called likelihood

E.g., $\sum_\theta P(x \mid \theta)$ can be anything; relative values of interest.

E.g., if $\theta = \text{prob of heads in a sequence of coin flips}$ then

$P(\text{HHTHH} \mid .6) > P(\text{HHTHH} \mid .5)$,

i.e., event HHTHH is more likely when $\theta = .6$ than $\theta = .5$

And what θ make HHTHH most likely?
Likelihood Function

\[P(HHTHH \mid \theta) : \]
Probability of HHTHH, given \(P(H) = \theta \):

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\theta^4(1-\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.0013</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0313</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0819</td>
</tr>
<tr>
<td>0.95</td>
<td>0.0407</td>
</tr>
</tbody>
</table>

![Graph showing the likelihood function](image)
Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observations x_1, x_2, \ldots, x_n

$$L(x_1, x_2, \ldots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

As a function of θ, what θ maximizes the likelihood of the data actually observed

Typical approach: $\frac{\partial}{\partial \theta} L(\bar{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\bar{x} \mid \theta) = 0$
Example 1

n independent coin flips, x_1, x_2, \ldots, x_n; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $\theta = \text{probability of heads}$

$$L(x_1, x_2, \ldots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$$

$$\log L(x_1, x_2, \ldots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$$

$$\frac{\partial}{\partial \theta} \log L(x_1, x_2, \ldots, x_n \mid \theta) = -\frac{n_0}{1 - \theta} + \frac{n_1}{\theta}$$

Setting to zero and solving:

$$\hat{\theta} = \frac{n_1}{n}$$

(Also verify it’s max, not min, & not better on boundary)

Observed fraction of successes in sample is MLE of success probability in population
Parameter Estimation

Given: indp samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$, **estimate:** θ.

E.g.: Given n normal samples, estimate mean & variance

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

$$\theta = (\mu, \sigma^2)$$
Ex2: I got data; a little birdie tells me it’s normal, and promises $\sigma^2 = 1$.
Which is more likely: (a) this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]
Which is more likely: (b) or this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]
Which is more likely: (c) or this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]
Which is more likely: (c) or this?

μ unknown, σ² = 1

Looks good by eye, but how do I optimize my estimate of μ?
Ex. 2: \(x_i \sim N(\mu, \sigma^2), \sigma^2 = 1, \mu \text{ unknown} \)

\[
L(x_1, x_2, \ldots, x_n | \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}
\]

\[
\ln L(x_1, x_2, \ldots, x_n | \theta) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi) - \frac{(x_i - \theta)^2}{2}
\]

\[
\frac{d}{d\theta} \ln L(x_1, x_2, \ldots, x_n | \theta) = \sum_{i=1}^{n} (x_i - \theta)
\]

And verify it’s max, not min & not better on boundary

\[
\hat{\theta} = \left(\sum_{i=1}^{n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean
Hmm …, density ≠ probability

So why is “likelihood” function equal to product of densities?? (Prob of seeing any specific x_i is 0, right?)

a) for maximizing likelihood, we really only care about relative likelihoods, and density captures that

b) has desired property that likelihood increases with better fit to the model

and/or

c) if density at x is $f(x)$, for any small $\delta>0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is constant wrt θ, so it just drops out of $d/d\theta \log L(\ldots) = 0$.
Ex3: I got data; a little birdie tells me it’s normal (but does not tell me μ, σ^2)
Which is more likely: (a) this?

\[\mu, \sigma^2 \text{ both unknown} \]
Which is more likely: (b) or this?

\(\mu, \sigma^2 \text{ both unknown} \)
Which is more likely: (c) or this?

\(\mu, \sigma^2 \) both unknown
Which is more likely: (d) or this?

\[\mu, \sigma^2 \text{ both unknown} \]

\[\mu \pm 0.5 \]

Observed Data

\[\mu \]
Which is more likely: (d) or this?

μ, σ^2 both unknown

Looks good by eye, but how do I optimize my estimates of μ & σ^2?
Ex 3: \(x_i \sim N(\mu, \sigma^2) \), \(\mu, \sigma^2 \) both unknown

\[
\ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi \theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} \frac{(x_i - \theta_1)}{\theta_2} = 0
\]

\[
\hat{\theta}_1 = \left(\sum_{i=1}^{n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since \(\theta_2 \) drops out of the \(\partial / \partial \theta_1 = 0 \) equation.
Ex. 3, (cont.)

\[
\ln L(x_1, x_2, \ldots, x_n|\theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi \theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \ldots, x_n|\theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0
\]

\[
\hat{\theta}_2 = \left(\frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)^2}{n} \right) = \frac{s^2}{n}
\]

Sample variance is MLE of population variance
Summary

MLE is one way to estimate parameters from data.
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Defining the “Likelihood Function” (based on the form of the model) is often the critical step; the math/algorithms to optimize it are generic.

Often simply \((d/d\theta)(\log \text{Likelihood}) = 0\)

Has the intuitively appealing property that the parameters maximize the likelihood of the observed data; basically just assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being unbiased, or at least consistent.
EM

The Expectation-Maximization Algorithm
(for a Two-Component Gaussian Mixture)
Two slips of paper in a hat:

- Pink: $\mu = 3$, and
- Blue: $\mu = 7$.

You draw one, then (without revealing color or μ) reveal a single sample $X \sim \text{Normal}(\text{mean } \mu, \sigma^2 = 1)$.

You happen to draw $X = 6.001$.

Dr. D. says “your slip = 7.” What is $P(\text{correct})$?

What if X had been 4.9?
Let “$X \approx 6$” be a shorthand for $6.001 - \delta/2 < X < 6.001 + \delta/2$.

\[
P(\mu = 7|X = 6) = \lim_{\delta \to 0} P(\mu = 7|X \approx 6)
\]

\[
P(\mu = 7|X \approx 6) = \frac{P(X \approx 6|\mu = 7)P(\mu = 7)}{P(X \approx 6)} \quad \text{Bayes rule}
\]

\[
= \frac{0.5P(X \approx 6|\mu = 7)}{0.5P(X \approx 6|\mu = 3) + 0.5P(X \approx 6|\mu = 7)}
\]

\[
\approx \frac{f(X = 6|\mu = 7)\delta}{f(X = 6|\mu = 3)\delta + f(X = 6|\mu = 7)\delta}, \quad \text{so}
\]

\[
P(\mu = 7|X = 6) = \frac{f(X = 6|\mu = 7)}{f(X = 6|\mu = 3) + f(X = 6|\mu = 7)} \approx 0.982
\]
Alternate View:

Posterior odds = Bayes Factor · Prior odds

\[
\frac{P(\mu = 7 | X = 6)}{P(\mu = 3 | X = 6)} = \frac{f(X = 6 | \mu = 7)}{f(X = 6 | \mu = 3)} \cdot \frac{0.50}{0.50} = \frac{0.2422}{0.0044} \cdot \frac{1}{1} = \frac{54.8}{1}
\]

I.e., 50:50 prior odds become 54:1 in favor of \(\mu = 7 \), given \(X = 6.001 \)

(and would become 3:2 in favor of \(\mu = 3 \), given \(X = 4.9 \))
Another Hat Trick

Two secret numbers, μ_{pink} and μ_{blue}

On pink slips, many samples of Normal($\mu_{pink}, \sigma^2 = 1$),
Ditto on blue slips, from Normal($\mu_{blue}, \sigma^2 = 1$).

Based on 16 of each, how would you “guess” the secrets (where “success” means your guess is within ±0.5 of each secret)?

Roughly how likely is it that you will succeed?
Another Hat Trick (cont.)

Pink/blue = red herrings; separate & independent

Given \(X_1, \ldots, X_{16} \sim N(\mu, \sigma^2) \), \(\sigma^2 = 1 \)

Calculate \(Y = (X_1 + \ldots + X_{16})/16 \sim N(\ ? , \ ?) \)

\[E[Y] = \mu \]

\[\text{Var}(Y) = 16\sigma^2/16^2 = \sigma^2/16 = 1/16 \]

I.e., \(X_i \)'s are all \(\sim N(\mu, 1) \); \(Y \sim N(\mu, 1/16) \)

and since \(0.5 = 2 \sqrt{1/16} \), we have:

“\(Y \) within ±.5 of \(\mu \)” = “\(Y \) within ±2 \(\sigma \) of \(\mu \)” \(\approx \) 95% prob

Note 1: \(Y \) is a point estimate for \(\mu \);

\(Y \pm 2 \sigma \) is a 95% confidence interval for \(\mu \)

(More on this topic later)
Histogram of 1000 samples of the average of 16 \(N(0,1)\) RVs

Red = \(N(0,1/16)\) density
Hat Trick 2 (cont.)

Note 2:

What would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others?
If they were on opposite sides of the means of the others
Previously:
How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ, σ that maximize the likelihood of the observed data.

We’re not always so lucky...
More Complex Example

This?

Or this?

(A modeling decision, not a math problem..., but if the later, what math?)
A Living Histogram

male and female genetics students, University of Connecticut in 1996

http://mindprod.com/jgloss/histogram.html
Another Real Example:
CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences
Gaussian Mixture Models / Model-based Clustering

Parameters θ

- means
 - μ_1
 - μ_2
- variances
 - σ_1^2
 - σ_2^2
- mixing parameters
 - τ_1
 - $\tau_2 = 1 - \tau_1$

P.D.F.

\[f(x|\mu_1, \sigma_1^2) \quad f(x|\mu_2, \sigma_2^2) \]

Likelihood

\[L(x_1, x_2, \ldots, x_n|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2) = \prod_{i=1}^{n} \sum_{j=1}^{2} \tau_j f(x_i|\mu_j, \sigma_j^2) \]

No closed-form max
Likelihood Surface
\[x_i = \begin{array}{c} -10.2, -10, -9.8 \\ -0.2, 0, 0.2 \\ 11.8, 12, 12.2 \end{array} \]

\[\mu_1 \]

\[\mu_2 \]

\[\sigma^2 = 1.0 \]

\[\tau_1 = 0.5 \]

\[\tau_2 = 0.5 \]
A What-If Puzzle

Likelihood

\[
L(x_1, x_2, \ldots, x_n \mid \mu_1, \mu_2, \sigma^2_1, \sigma^2_2, \tau_1, \tau_2) \]

\[
= \prod_{i=1}^{n} \sum_{j=1}^{2} \tau_j f(x_i \mid \mu_j, \sigma^2_j)
\]

Messy: no closed form solution known for finding \(\theta\) maximizing \(L\)

But what if we knew the hidden data?

\[
z_{ij} = \begin{cases}
1 & \text{if } x_i \text{ drawn from } f_j \\
0 & \text{otherwise}
\end{cases}
\]
EM as Egg vs Chicken

If parameters θ known, could estimate z_{ij}

E.g., $|x_i - \mu_1|/\sigma_1 \gg |x_i - \mu_2|/\sigma_2 \Rightarrow P[z_{i1}=1] \ll P[z_{i2}=1]$

If z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence μ_2, σ_2

But we know neither; (optimistically) iterate:

E-step: calculate expected z_{ij}, given parameters

M-step: calculate “MLE” of parameters, given $E(z_{ij})$

Overall, a clever “hill-climbing” strategy
Simple Version:
“Classification EM”

If $\mathbb{E}[Z_{ij}] < .5$, pretend $z_{ij} = 0$; $\mathbb{E}[Z_{ij}] > .5$, pretend it’s 1

I.e., classify points as component 1 or 2

Now recalc θ, assuming that partition (standard MLE)

Then recalc $\mathbb{E}[Z_{ij}]$, assuming that θ

Then re-recalc θ, assuming new $\mathbb{E}[Z_{ij}]$, etc., etc.

“Full EM” is slightly more involved, (to account for uncertainty in classification) but this is the crux.

Another contrast: HMM parameter estimation via “Viterbi” vs “Baum-Welch” training. In both, “hidden data” is “which state was it in at each step?” Viterbi is like E-step in classification EM: it makes a single state prediction. B-W is full EM: it captures the uncertainty in state prediction, too. For either, M-step maximizes HMM emission/transition probabilities, assuming those fixed states (Viterbi) / uncertain states (B-W).
x_i's are known; θ unknown. Goal is to find MLE θ of:

$$L(x_1, \ldots, x_n \mid \theta)$$
(hidden data likelihood)

Would be easy if z_{ij}'s were known, i.e., consider:

$$L(x_1, \ldots, x_n, z_{11}, z_{12}, \ldots, z_{n2} \mid \theta)$$
(complete data likelihood)

But z_{ij}'s aren’t known.

Instead, maximize expected likelihood of visible data

$$E(L(x_1, \ldots, x_n, z_{11}, z_{12}, \ldots, z_{n2} \mid \theta)),$$

where expectation is over distribution of hidden data (z_{ij}'s)
The E-step:

Find E(z_{ij}), i.e., P(z_{ij}=1)

Assume θ known & fixed

A (B): the event that x_i was drawn from f_1 (f_2)

D: the observed datum x_i

Expected value of z_{i1} is P(A|D)

\[
P(A|D) = \frac{P(D|A)P(A)}{P(D)}
\]

\[
P(D) = P(D|A)P(A) + P(D|B)P(B)
\]

\[
= f_1(x_i|θ_1) \tau_1 + f_2(x_i|θ_2) \tau_2
\]

Note: denominator = sum of numerators – i.e. that which normalizes sum to 1 (typical Bayes)
Let “$X \approx 6$” be a shorthand for $6.001 - \delta/2 < X < 6.001 + \delta/2$

\begin{align*}
P(\mu = 7|X = 6) &= \lim_{\delta \to 0} P(\mu = 7|X \approx 6) \\
P(\mu = 7|X \approx 6) &= \frac{P(X \approx 6|\mu = 7)P(\mu = 7)}{P(X \approx 6)} \\
&= \frac{0.5P(X \approx 6|\mu = 7)}{0.5P(X \approx 6|\mu = 3) + 0.5P(X \approx 6|\mu = 7)} \\
&\approx \frac{f(X = 6|\mu = 7)\delta}{f(X = 6|\mu = 3)\delta + f(X = 6)|\mu = 7)\delta}, \text{ so} \\
P(\mu = 7|X = 6) &= \frac{f(X = 6|\mu = 7)}{f(X = 6|\mu = 3) + f(X = 6)|\mu = 7} \approx 0.982
\end{align*}
Complete Data Likelihood

Recall:

\[z_{1j} = \begin{cases}
1 & \text{if } x_1 \text{ drawn from } f_j \\
0 & \text{otherwise}
\end{cases} \]

so, correspondingly,

\[L(x_1, z_{1j} \mid \theta) = \begin{cases}
\tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\
\tau_2 f_2(x_1 \mid \theta) & \text{otherwise}
\end{cases} \]

Formulas with “if’s” are messy; can we blend more smoothly?

Yes, many possibilities. Idea 1:

\[L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta) \]

Idea 2 (Better):

\[L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}} \]
M-step:

Find θ maximizing $E(\log(\text{Likelihood}))$

(For simplicity, assume $\sigma_1 = \sigma_2 = \sigma; \tau_1 = \tau_2 = \tau = 0.5$)

$$L(\tilde{x}, \tilde{z} \mid \theta) = \prod_{i=1}^{n} \frac{\tau}{\sqrt{2\pi\sigma^2}} \exp\left(-\sum_{j=1}^{2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)$$

$$E[\log L(\tilde{x}, \tilde{z} \mid \theta)] = E\left[\sum_{i=1}^{n} \left(\log \tau - \frac{1}{2} \log(2\pi\sigma^2) - \sum_{j=1}^{2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)\right]$$

$$= \sum_{i=1}^{n} \left(\log \tau - \frac{1}{2} \log(2\pi\sigma^2) - \sum_{j=1}^{2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)$$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

$$\mu_j = \sum_{i=1}^{n} E[z_{ij}] x_i / \sum_{i=1}^{n} E[z_{ij}]$$

(intuit: avg, weighted by subpop prob)
Hat Trick 2 (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables (z_{ij}) were known.

What if they’re not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others? If they were on opposite sides of the means of the others
M-step: calculating mu’s

\[\mu_j = \frac{\sum_{i=1}^{n} E[z_{ij}] x_i}{\sum_{i=1}^{n} E[z_{ij}]} \]

In words: \(\mu_j \) is the average of the observed \(x_i \)'s, weighted by the probability that \(x_i \) was sampled from component \(j \).

<table>
<thead>
<tr>
<th>(E[z_{i1}])</th>
<th>0.99</th>
<th>0.98</th>
<th>0.7</th>
<th>0.2</th>
<th>0.03</th>
<th>0.01</th>
<th>row sum</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E[z_{i2}])</td>
<td>0.01</td>
<td>0.02</td>
<td>0.3</td>
<td>0.8</td>
<td>0.97</td>
<td>0.99</td>
<td>3.09</td>
<td></td>
</tr>
</tbody>
</table>

| \(x_i \) | 9 | 10 | 11 | 19 | 20 | 21 | 90 | 15 |

In natural numbers:

- \(E[z_{i1}]x_i \) values: 8.9, 9.8, 7.7, 3.8, 0.6, 0.2, row sum: 31.0, avg: 10.66
- \(E[z_{i1}]x_i \) values: 0.1, 0.2, 3.3, 15.2, 19.4, 20.8, row sum: 59.0, avg: 19.09
2 Component Mixture

\[\sigma_1 = \sigma_2 = 1; \; \tau = 0.5 \]

<table>
<thead>
<tr>
<th></th>
<th>mu1</th>
<th>mu2</th>
<th>-6.00</th>
<th>-5.00</th>
<th>-4.99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-20.00</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1</td>
<td>-6</td>
<td>z11</td>
<td>5.11E-12</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>x2</td>
<td>-5</td>
<td>z21</td>
<td>2.61E-23</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>x3</td>
<td>-4</td>
<td>z31</td>
<td>1.33E-34</td>
<td>9.98E-01</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>x4</td>
<td>0</td>
<td>z41</td>
<td>9.09E-80</td>
<td>1.52E-08</td>
<td>4.11E-03</td>
</tr>
<tr>
<td>x5</td>
<td>4</td>
<td>z51</td>
<td>6.19E-125</td>
<td>5.75E-19</td>
<td>2.64E-18</td>
</tr>
<tr>
<td>x6</td>
<td>5</td>
<td>z61</td>
<td>3.16E-136</td>
<td>1.43E-21</td>
<td>4.20E-22</td>
</tr>
<tr>
<td>x7</td>
<td>6</td>
<td>z71</td>
<td>1.62E-147</td>
<td>3.53E-24</td>
<td>6.69E-26</td>
</tr>
</tbody>
</table>

Essentially converged in 2 iterations

(Excel spreadsheet on course web)
EM Summary

Fundamentally a maximum likelihood parameter estimation problem; broader than just Gaussian

Useful if 0/1 hidden data, and if analysis would be more tractable if hidden data z were known

Iterate:

E-step: estimate E(z) for each z, given θ
M-step: estimate θ maximizing E[log likelihood] given E[z] [where “E[logL]” is wrt random z ~ E[z] = p(z=1)]
EM Issues

Under mild assumptions (DEKM sect 11.6), EM is guaranteed to increase likelihood with every E-M iteration, hence will converge. But it may converge to a local, not global, max. (Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often applied to NP-hard problems (including clustering, above and motif-discovery, soon)

Nevertheless, widely used, often effective
Applications

Clustering is a remarkably successful exploratory data analysis tool

- Web-search, information retrieval, gene-expression, ...
- Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

- With many components, empirically match arbitrary distribution
- Often well-justified, due to “hidden parameters” driving the visible data

EM is extremely widely used for “hidden-data” problems

- Hidden Markov Models – speech recognition, DNA analysis, ...
A “Machine Learning” Example
Handwritten Digit Recognition

Given: 10^4 unlabeled, scanned images of handwritten digits, say 25×25 pixels,

Goal: automatically classify new examples

Possible Method:

Each image is a point in \mathbb{R}^{625}; the “ideal” 7, say, is one such point; model other 7’s as a Gaussian cloud around it

Do EM, as above, but 10 components in 625 dimensions instead of 2 components in 1 dimension

“Recognize” a new digit by best fit to those 10 models, i.e., basically max E-step probability
Relative entropy
Relative Entropy

• AKA Kullback-Liebler Distance/Divergence, AKA Information Content

• Given distributions P, Q

\[H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \]

Notes:

Let \(P(x) \log \frac{P(x)}{Q(x)} = 0 \) if \(P(x) = 0 \) [since \(\lim_{y \to 0} y \log y = 0 \)]

Undefined if \(0 = Q(x) < P(x) \)
Relative Entropy

\[
H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)}
\]

- Intuition: A quantitative measure of how much P “diverges” from Q. (Think “distance,” but note it’s not symmetric.)
 - If P \(\approx\) Q everywhere, then \(\log(P/Q) \approx 0\), so \(H(P||Q) \approx 0\)
 - But as they differ more, sum is pulled above 0 (next 2 slides)
- What it means quantitatively: Suppose you sample \(x\), but aren’t sure whether you’re sampling from P (call it the “null model”) or from Q (the “alternate model”). Then \(\log(P(x)/Q(x))\) is the log likelihood ratio of the two models given that datum. \(H(P||Q)\) is the expected per sample contribution to the log likelihood ratio for discriminating between those two models.
- Exercise: if \(H(P||Q) = 0.1\), say. Assuming Q is the correct model, how many samples would you need to confidently (say, with 1000:1 odds) reject P?
\[
\ln x \quad \leq \quad x - 1
\]
\[
-\ln x \quad \geq \quad 1 - x
\]
\[
\ln(1/x) \quad \geq \quad 1 - x
\]
\[
\ln x \quad \geq \quad 1 - 1/x
\]
Theorem: $H(P \parallel Q) \geq 0$

\begin{align*}
H(P \parallel Q) & = \sum_x P(x) \log \frac{P(x)}{Q(x)} \\
& \geq \sum_x P(x) \left(1 - \frac{Q(x)}{P(x)}\right) \\
& = \sum_x \left(P(x) - Q(x)\right) \\
& = \sum_x P(x) - \sum_x Q(x) \\
& = 1 - 1 \\
& = 0
\end{align*}

Idea: if $P \neq Q$, then
$P(x) > Q(x) \Rightarrow \log\left(\frac{P(x)}{Q(x)}\right) > 0$
and
$P(y) < Q(y) \Rightarrow \log\left(\frac{P(y)}{Q(y)}\right) < 0$

Q: Can this pull $H(P \parallel Q) < 0$?
A: No, as theorem shows.

Intuitive reason: sum is weighted by $P(x)$, which is bigger at the positive log ratios vs the negative ones.

Furthermore: $H(P \parallel Q) = 0$ if and only if $P = Q$

Bottom line: “bigger” means “more different”