RNA Search and Motif Discovery

CSE 427 Winter 2008

Outline

Task 1: RNA 2^{ary} Structure Prediction (last time) Task 2: RNA Motif Models Covariance Models Training & "Mutual Information" Task 3: Search Rigorous & heuristic filtering Task 4: Motif discovery

Task 2: Motif Description

How to model an RNA "Motif"?

Conceptually, start with a profile HMM: from a multiple alignment, estimate nucleotide/ insert/delete preferences for each position given a new seq, estimate likelihood that it could be generated by the model, & align it to the model AACAAAGccggccaggcuuucAGUA GAAUAUCUuuuggauu....AGUA GAAUAUCUuuuggauu....AGUA GAAUAUCUuuaugauu....AGUA Mostly G del ins all G

RNA Motif Models

"Covariance Models" (Eddy & Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate Con: model building hard, search sloooow

"RNA sequence analysis using covariance models"

Eddy & Durbin Nucleic Acids Research, 1994 vol 22 #11, 2079-2088 (see also, Ch 10 of Durbin *et al.*)

What

A probabilistic model for RNA families The "Covariance Model" ~ A Stochastic Context-Free Grammar A generalization of a profile HMM Algorithms for Training From aligned or unaligned sequences Automates "comparative analysis" Complements Nusinov/Zucker RNA folding Algorithms for searching

Very accurate search for tRNA

(Precursor to tRNAscanSE - current favorite) Given sufficient data, model construction comparable to, but not quite as good as, human experts

Some quantitative info on importance of pseudoknots and other tertiary features

Probabilistic Model Search

As with HMMs, given a sequence, you calculate likelihood ratio that the model could generate the sequence, vs a background model

You set a score threshold Anything above threshold \rightarrow a "hit"

Scoring:

"Forward" / "Inside" algorithm - sum over all paths Viterbi approximation - find single best path (Bonus: alignment & structure prediction)

Comparison to TRNASCAN

				di	Psei sallow	udoknot ed allo	ts bwed $\left(\sum_{i=1}^{n} \max_{j} M_{i,j}\right)/2$
	Avg.	Min	Max	ClustalV	1° info	2° info]
Dataset	id	id	id	accuracy	(bits)	(bits)	
TEST	.402	.144	1.00	64%	43.7	30.0-32.3	
SIM100	.396	.131	.986	54%	39.7	30.5 - 32.7	
SIM65	.362	.111	.685	37%	31.8	28.6 - 30.7	

Table 1: Statistics of the training and test sets of 100 trivA sequences each. In a verage identity in an alignment is the average pairwise identity of all aligned symbol pairs, with gap/symbol alignments counted as mismatches. Primary sequence information content is calculated according to [48]. Calculating pairwise mutual information content is an NPcomplete problem of finding an optimum partition of columns into pairs. A lower bound is calculated by using the model construction procedure to find an optimal partition subject to a non-pseudoknotting restriction. An upper bound is calculated as sum of the single best pairwise covariation for each position, divided by two; this includes all pairwise tertiary interactions but overcounts because it does not guarantee a disjoint set of pairs. For the meaning of multiple alignment accuracy of ClustalV, see the text.

			score	alignment
Model	training set	iterations	score (bits)	alignment accuracy
Model A1415	training set all sequences (aligned)	iterations 3	score (bits) 58.7	alignment accuracy 95%
Model A1415 A100	training set all sequences (aligned) SIM100 (aligned)	iterations 3 3	score (bits) 58.7 57.3	alignment accuracy 95% 94%
Model A1415 A100 A65	training set all sequences (aligned) SIM100 (aligned) SIM65 (aligned)	iterations 3 3 3	score (bits) 58.7 57.3 46.7	alignment accuracy 95% 94% 93%
Model A1415 A100 A65 U100	training set all sequences (aligned) SIM100 (aligned) SIM65 (aligned) SIM100 (degapped)	iterations 3 3 3 23	score (bits) 58.7 57.3 46.7 56.7	alignment accuracy 95% 94% 93% 90%

Table 2: Training and multiple alignment results from models trained from the trusted alignments (A models) and models trained from no prior knowledge of tRNA (U models).

1000 cpu cluster for a month per release

Rapidly growing:

Rel 1.0, 1/03: 25 families, 55k instances Rel 7.0, 3/05: 503 families, >300k instances

Task 3: Faster Search

Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy

Zasha Weinberg & W.L. Ruzzo Recomb '04, ISMB '04, Bioinfo '06

RaveNnA: Genome Scale RNA Search

Typically 100x speedup over raw CM, w/ no loss in accuracy: drop structure from CM to create a (faster) HMM use that to pre-filter sequence; discard parts where, provably, CM will score < threshold; actually run CM on the rest (the promising parts) assignment of HMM transition/emission scores is key (large convex optimization problem)

Weinberg & Ruzzo, Bioinformatics, 2004, 2006

Some scores	filter better
$P_{UA} = I \leq L_{U} + R_{A}$ $P_{UG} = 4 \leq L_{U} + R_{G}$	
Option I: $L_U = R_A = R_G = 2$	Assuming ACGU $\approx 25\%$ Opt 1: $L_U + (R_A + R_G)/2 = 4$
Option 2: $L_U = 0, R_A = I, R_G = 4$	Opt 2: L _U + (R _A + R _G)/2 = 2.5

Calculating E(L_i, R_i)

 $E(L_i, R_i) = \sum_x Forward-score(x)*Pr(x)$

Forward-like: for every state, calculate expected score for all paths ending there; easily calculated from expected scores of predecessors & transition/emission probabilities/scores

Estimate (13	ed Filtering 9 Rfam 4.0 fa	g Efficiency milies)	/
Filtering fraction	# families (compact)	# families (expanded)	
< 10-4	105	110	
10-4 - 10-2	8	17	speedup
.0110	11	3	-
.1025	2	2	
.2599	6	4	
.99 - 1.0	7	3	
			-

Results: New ncRNA's?

Name	# found BLAST + CM	# found rigorous filter + CM	# new
Pyrococcus snoRNA	57	180	123
Iron response element	201	322	121
Histone 3' element	1004	1106	102
Purine riboswitch	69	123	54
Retron msr	11	59	48
Hammerhead I	167	193	26
Hammerhead III	251	264	13
U4 snRNA	283	290	7
S-box	128	131	3
U6 snRNA	1462	1464	2
U5 snRNA	199	200	1
U7 snRNA	312	313	1

Task 4: Motif Discovery

RNA Motif Discovery

Typical problem: given a ~10-20 unaligned sequences of ~1kb, most of which contain instances of one RNA motif of, say, 150bp -find it.

Example: 5' UTRs of orthologous glycine cleavage genes from γ -proteobacteria

Approaches

Align sequences, then look for common structure Predict structures, then try to align them Do both together

"Obvious" Approach I: Align First, Predict from Multiple Sequence Alignment

Compensatory mutations reveal structure, (core of "comparative sequence analysis") *but* usual alignment algorithms penalize them (twice)

Pitfall for sequence-alignmentfirst approach

Structural conservation ≠ Sequence conservation Alignment without structure information is unreliable

$Alignment \rightarrow CM \rightarrow Alignment$

Similar to HMM, but slower Builds on Eddy & Durbin, '94 But new way to infer which columns to pair, via a principled combination of mutual information and predicted folding energy And, it's local, not global, alignment (harder)

		SL	Im	in	nai	ſУ	ΟΤ	RIa	mte	St		
		f	ar	ni	lie	S	and	d re	sults			
ID	Family	Rfam ID	#seqs	%id	length	#hp	CMfinder	CW/Pfold	CW/RNAalifold	Carnac	Foldalign	ComRNA
1	Cobalamin	RF00174	71	49	216	4	0.59	0.05	0	х	-	0
2	ctRNA_pGA1	RF00236	17	74	83	2	0.91	0.70	0.72	0	0.86	0
3	Entero_CRE	RF00048	56	81	61	1	0.89	0.74	0.22	0		0
4	Entero_OriR	RF00041	35	77	73	2	0.94	0.75	0.76	0.80	0.52	0.52
5	glmS	RF00234	14	58	188	4	0.83	0.12	0.18	0	-	0.13
6	Histone3	RF00032	63	77	26	1	1	0	0	0	-	0
7	Intron_gpII	RF00029	75	55	92	2	0.80	0.30	0	0	1.1	0
8	IRE	RF00037	30	68	30	1	0.77	0.22	0	0	0.38	0
9	let-7	RF00027	9	69	84	1	0.87	0.08	0.42	0	0.71	0.78
10	lin-4	RF00052	9	69	72	1	0.78	0.51	0.75	0.41	0.65	0.24
11	Lysine	RF00168	48	48	183	4	0.77	0.24	0	х		0
12	mir-10	RF00104	11	66	75	1	0.66	0.59	0.60	0	0.48	0.33
13	Purine	RF00167	29	55	103	2	0.91	0.07	0	0	-	0.27
14	RFN	RF00050	47	66	139	4	0.39	0.68	0.26	0	-	0
15	Rhino_CRE	RF00220	12	71	86	1	0.88	0.52	0.52	0.69	0.41	0.61
16	s2m	RF00164	23	80	43	1	0.67	0.80	0.45	0.64	0.63	0.29
17	S_box	RF00162	64	66	112	3	0.72	0.11	0	0	-	0
18	SECIS	RF00031	43	43	68	1	0.73	0	0	0	-	0
19	Tymo_RNA-like	RF00233	22	72	86	4	0.81	0.33	0.36	0.30	0.80	0.48
				Avera	ge Accur	acy:	0.79	0.36	0.28	0.17	0.60	0.19
				Avera	ge Specit	ficity:	0.81	0.42	0.57	0.83	0.60	0.65
				Avera	ge Sensit	ivity:	0.77	0.36	0.23	0.13	0.61	0.17

Predicting New cis-Regulatory RNA Elements

Goal:

Given unaligned UTRs of coexpressed or orthologous genes, find common structural motifs Difficulties: Low sequence similarity: alignment difficult Varying flanking sequence

Motif missing from some input genes

Genome Scale Search: Why

Most riboswitches, e.g., are present in \sim 5 copies per genome

Throughout (most of) clade

More examples give better model, hence even more examples, fewer errors

More examples give more clues to function - critical for wet lab verification

Results

Analyzed most sequenced bacteria (~2005) bacillus/clostridia gamma proteobacteria cyanobacteria actinobacteria firmicutes

DAV	Rank	ED	Score	= = ^ *	e CME	ID	Gene	CDD Description	Rfam
0	43	107	3400	367	11	9904	IIvB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box
1	10	344	3115	96	22	13174	COG3859	Predicted membrane protein	RF00059 THI
2	77	1284	2376	112	6	11125	MetH	Methionine synthase I specific DNA methylase	RF00162 S_box
3	0	5	2327	30	26	9991	COG0116	Predicted N6-adenine-specific DNA methylase	RF00011 RNaseP_bact_b
4	6	66	2228	49	18	4383	DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RF00050 RFN
7	145	952	1429	51	7	10390	GuaA	GMP synthase	RF00167 Purine
8	17	108	1322	29	13	10732	GcvP	Glycine cleavage system protein P	RF00504 Glycine
9	37	749	1235	28	7	24631	DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bac
10	123	1358	1222	36	6	10986	CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamir
20	137	1133	899	32	7	9895	LysA	Diaminopimelate decarboxylase	RF00168 Lysine
21	36	141	896	22	10	10727	TerC	Membrane protein TerC	RF00080 yybP-yko
39	202	684	664	25	5	11945	MgtE	Mg/Co/Ni transporter MgtE	RF00380 ykoK
40	26	74	645	19	18	10323	GImS	Glucosamine 6-phosphate synthetase	RF00234 glmS
53	208	192	561	21	5	10892	OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ¹
122	99	239	413	10	7	11784	EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkE
255	392	281	268	8	6	10272	COG0398	Uncharacterized conserved protein	RF00023 tmRNA

	Rfam	M	embersh	ip		Overlap			Structure	9
		#	Sn	Sp	nt	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	0.74 ¹	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	0.56 ¹	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.7

Table 2: Motif prediction accuracy vs prokaryotic subset of Rfam full alignments. "Membership": the number of sequences in the overlap between our predictions and Rfam's ("#"), the sensitivity ("Sn") and specificity ("Sp") of our membership predictions. "Overlap' are long th of overlap between our predictions and Rfam's ("#"), the sensitivity ("Sn") and Rfam's ("Th"), the fractional lengths of the overlap between our predictions and Rfam's ("Th"), the fractional lengths of the overlap between our predictions and Rfam's ("Th"), the fractional lengths of the overlap between our predictions ("Sn") and in ours ("Sp"). "Structure": avg number of correctly predicted canonical base pairs (in overlapped regions) and the sensivity ("Sn") and specificity ("Sp") of our predictions. 'After another iteration of RaveNnA scan and refinement, the membership sensitivities of Glycine and Cobalamin increased to 76% and 98% respectively, while the specificity of Glycine remained the same, and specificity of Cobalamin dropped to 84%.

Rank	#	CDD	Gene: Description	Annotation
6	69	28178	DHOase IIa: Dihydroorotase	PyrR attenuator [22]
15	33	10097	RpIL: Ribosomal protein L7/L1	L10 r-protein leader; see Supp
19	36	10234	RpsF: Ribosomal protein S6	S6 r-protein leader
22	32	10897	COG1179: Dinucleotide-utilizing enzymes	6S RNA [25]
27	27	9926	RpsJ: Ribosomal protein S10	S10 r-protein leader; see Supp
29	11	15150	Resolvase: N terminal domain	
31	31	10164	InfC: Translation initiation factor 3	IF-3 r-protein leader; see Supp
41	26	10393	RpsD: Ribosomal protein S4 and related proteins	S4 r-protein leader; see Supp [30]
44	30	10332	GroL: Chaperonin GroEL	HrcA DNA binding site [46]
46	33	25629	Ribosomal L21p: Ribosomal prokaryotic L21 protein	L21 r-protein leader; see Supp
50	11	5638	Cad: Cadmium resistance transporter	[47]
51	19	9965	RpIB: Ribosomal protein L2	S10 r-protein leader
55	7	26270	RNA pol Rpb2 1: RNA polymerase beta subunit	-
69	9	13148	COG3830: ACT domain-containing protein	
72	28	4174	Ribosomal S2: Ribosomal protein S2	S2 r-protein leader
74	9	9924	RpsG: Ribosomal protein S7	S12 r-protein leader
86	6	12328	COG2984: ABC-type uncharacterized transport system	-
88	19	24072	CtsR: Firmicutes transcriptional repressor of class III	CtsR DNA binding site [48]
100	21	23019	Formyl trans N: Formyl transferase	
103	8	9916	PurE: Phosphoribosylcarboxyaminoimidazole	
117	5	13411	COG4129: Predicted membrane protein	
120	10	10075	RpIO: Ribosomal protein L15	L15 r-protein leader
121	9	10132	RpmJ: Ribosomal protein L36	IF-1 r-protein leader
129	4	23962	Cna B: Cna protein B-type domain	
130	9	25424	Ribosomal S12: Ribosomal protein S12	S12 r-protein leader
131	9	16769	Ribosomal L4: Ribosomal protein L4/L1 family	L3 r-protein leader
136	7	10610	COG0742: N6-adenine-specific methylase	ylbH putative RNA motif [4]
140	12	8892	Pencillinase R: Penicillinase repressor	Blal, Mecl DNA binding site [49]
157	25	24415	Ribosomal S9: Ribosomal protein S9/S16	L13 r-protein leader; Fig 3
160	27	1790	Ribosomal L19: Ribosomal protein L19	L19 r-protein leader; Fig 2
164	6	9932	GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose	
174	8	13849	COG4708: Predicted membrane protein	
176	7	10199	COG0325: Predicted enzyme with a TIM-barrel fold	1
182	9	10207	RpmF: Ribosomal protein L32	L32 r-protein leader
187	11	27850	LDH: L-lactate dehydrogenases	
190	11	10094	CspR: Predicted rRNA methylase	1
194	9	10353	FusA: Translation elongation factors	EF-G r-protein leader

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, Block, Sudarsan, Neph, Tompa, Ruzzo and Breaker. Nucl. Acids Res., July 2007 35: 4809-4819.

ncRNA discovery in Vertebrates

Comparative genomics beyond sequence based alignments: RNA structures in the ENCODE regions

E. Torarinsson, Z. Yao, E. D. Wiklund, J. B. Bramsen , C. Hansen, J. Kjems, N. Tommerup, W. L. Ruzzo and J. Gorodkin

Genome Research, Jan 2008

ncRNA discovery in Vertebrates

Previous studies focus on highly conserved

regions (Washietl, Pedersen et al. 2007)

Evofold (Pedersen et al. 2006)

RNAz (Washietl et al. 2005)

We explore regions with weak sequence conservation

Approach

Extract ENCODE Multiz alignments Remove exons, most conserved elements. 56017 blocks, 8.7M bps.
Apply CMfinder to both strands.
10,106 predictions, 6,587 clusters. False positive rate: 50% based on a heuristic ranking function.

New scoring scheme

Goal: improve false discovery rate for top ranking motifs

Current methods can not improve beyond 50% FDR by using higher score threshold.

Neither RNAz nor Evofold are robust on poorly conserved and gappy regions.

Method

Goal: given a structural alignments, determine its significance.

Phylo-SCFG as in Evofold

SCFG to capture consensus secondary structure Evolution models to capture mutations among species

Improvement over Evofold

Model single stranded regions as mixture of conserved and non conserved components.

Better model for gaps

Consider secondary structure folding energy

For each base pair, assign a score based on its posterior likelihood.

Take the sum of all such pairs.

Else Discovery Rate

FDR vs score ranks in the original alignments

pscore

0.0

<section-header>CS/Math/Stats Points of Contact Scientific visualization Gene expression patterns Database Integration of disparate, overlapping data sources Distributed genome annotation in face of shifting underlying coordinates AI/NLP/Text Mining Information extraction from journal texts with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models,... Machine learning System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec, Algorithms

Frontiers & Opportunities

New data:

Proteomics, SNPs, association studies, array CGH, comparative sequence information, methylation, chromatin structure, ChIP-seq, ncRNA, interactome

New methods:

graphical models? rigorous filtering?

Data integration

many, complex, noisy sources

Systems Biology

Frontiers & Opportunities

Open Problems:

splicing, alternative splicing multiple sequence alignment (genome scale, w/ RNA etc.) protein & RNA structure interaction modeling network models RNA trafficing ncRNA discovery chromatin dynamics ...

Exciting Times

Lots to do Various skills needed I hope I've given you a taste of it

Thanks!