CSE 427
 Computational Biology

Multiple Sequence Alignment

Motivations

Common structure, function, or origin may be only weakly reflected in sequence; multiple comparisons may highlight weak signal
Major uses
represent protein families
represent \& identify conserved seq features
deduce evolutionary history

Multiple Sequence Alignment

Defn: An alignment of $\mathrm{S}_{\mathrm{l}}, \mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$, is a set of strings $S^{\prime}, S^{\prime}{ }_{2}, \ldots, S_{k}^{\prime}$, (with spaces) s.t.
(1) $\left|S_{1}^{\prime}\right|=\left|S_{2}^{\prime}\right|=\ldots=\left|S_{k}^{\prime}\right|$, and
(2) removing all spaces leaves $S_{1}, S_{2}, \ldots, S_{k}$

$$
\begin{array}{lllllll}
a & c & b & c & d & b & a \\
c & c & -\quad b & c & d & b \\
a & c & a & b & c & d & -c \\
a & c & d & b & -d & d & d
\end{array}
$$

Multiple Alignment Scoring

Varying goals
Varying methods (\& controversy)
3 examples:
Consensus string;
sum distances to it
$\underset{\substack{\text { abdede } \\ \text { xcoxd }}}{\text { x.d }}\rangle \quad \Sigma_{i} D\left(S_{i}, C\right)$
Align to (evolutionary) tree;
sum edges
SP score:

Sum of Pairs

$$
\begin{gathered}
\substack{\text { abcde } \\
\text { ac-de } \\
\text { xccxd }}
\end{gathered} \quad \sum_{\mathrm{i}<\mathrm{j}} \mathrm{D}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{~S}_{\mathrm{j}}\right)
$$

Optimal SP Alignment via DP

k strings of length n
$(\mathrm{n}+\mathrm{I}) \times(\mathrm{n}+\mathrm{I}) \times \cdots \times(\mathrm{n}+\mathrm{I})$ k-dim array
Max of $2^{k}-1$ neighbors per cell; $(\mathrm{n}+1)^{k}$ cells
Time: at least $(2 n)^{k}$
Want n, k 10's to I00's
Unlikely to do dramatically better -

Center Star Alignment:
 A Bounded Error Approximation

Distance δ, instead of similarity σ
Assume "Triangle Inequality": $\delta(x, z) \leq \delta(x, y)+\delta(y, z)$
[plausible, but not always true]
Theorem: CSA gives MSA with SP score within $2 \times$ of optimal

Center Star Alignment: Method

$D(S, T)=$ min distance of S-T alignment
Find S_{c} minimizing $\sum_{i \neq c} D\left(S_{c}, S_{i}\right)$
For each unaligned string S
Align $S^{\prime}{ }_{c}$ and S, giving $S^{\prime \prime}{ }_{c}$ and S^{\prime}
Add new spaces in $S^{\prime \prime}{ }_{c}$ to all previously aligned strings
Add S' to set

Center Star Alignment: Error Bound

I will completely skip proof, but it can be shown that this algorithm gives an answer that is within a factor of two of the optimal (under SP model).
$2 x$ comes from "Triangle Inequality"

Center Star Alignment: Timing

Assume all strings of length n
$\binom{k}{2}$ pairwise alignments, n^{2} each
$\mathrm{i}^{\text {th }}$ addition costs $\left(\mathrm{i}^{*} \mathrm{n}\right){ }^{*} \mathrm{n}: \Sigma_{\mathrm{i}} \mathrm{in}^{2}=\mathrm{O}\left(\mathrm{k}^{2} \mathrm{n}^{2}\right)$
Total time:

Center Star Alignment: Notes

Error analysis doesn't mean it's always $2 \mathbf{x}$ optimal
Better in practice and never worse
Could add "local optimizations" at end

Where might CSA be poor?

Better to merge "clusters" first?
Why doesn't CSA do it?
-- Can't analyze it!

Iterative Pairwise Alignment

Align some pair
While not done
Pick an unaligned string "near" some aligned one(s)
Align with the previously aligned group

Many variants

Summarizing a Multiple Alignment

A profile of a multiple alignment gives letter frequencies per column

$$
\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} \\
\mathrm{a} & \mathrm{~b} & - \\
- & \mathrm{b} & \mathrm{a} \\
\mathrm{c} & \mathrm{a} & -
\end{array}
$$

	col I	col 2	col 3
a	50%	25%	50%
b	0%	75%	0%
c	25%	0%	0%
-	25%	0%	50%

Alternatively, use log likelihood ratios
$P_{i}(a)=$ fraction of a 's in col i
$p(a)=$ fraction of $a \prime s$ overall $\quad \log p_{i}(a) / p(a)$

Aligning A String To A Profile

Key in pairwise alignment is scoring two positions x \& y : $\sigma(x, y)$
For x a letter and y a (column) of a profile, let $\sigma(x, y)=$ value for x in col y
Invent a score for $\sigma(x,-)$
Run usual pairwise DP alignment

Iterative Pairwise Alignment (More Detail)

align some pair
while not done
Pick an unaligned string "near" some aligned one(s)
Align with the profile of the previously aligned group
Resulting new spaces inserted in all
Many variants

Aligning to a Phylogenetic Tree

Given a tree with a sequence at each leaf, assign labels to internal nodes so as to minimize $\sum_{\text {edges (i,j) }} \mathrm{D}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$
[Note: NOT SP score]
Also NP-Complete
Poly time approximation within $2 \times$ possible; better with more time (PTAS)

Progressive Alignment

Again, aligning to a tree Initially, leaves labeled by strings; internal nodes unlabeled
at each step, pick an unlabeled node \times with labeled children y, z
Align $y \& z$, treating columns as units; give x that label
New feature: at general step, we're aligning two (smaller) alignments; score? (e.g. relative entropy)

Similar Distributions?

Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \geq 0
$$

Notes:

$$
\text { Let } P(x) \log \frac{P(x)}{Q(x)}=0 \text { if } P(x)=0\left[\text { since } \lim _{y \rightarrow 0} y \log y=0\right]
$$

Undefined if $0=Q(x)<P(x)$

WMM: How "Informative"?

 Mean score of site vs bkg?For any fixed length sequence x, let $P(x)=$ Prob. of x according to WMM $Q(x)=$ Prob. of x according to background Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

$H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM; $-H(Q \| P)$ is expected score of Background

WMM Scores vs Relative Entropy

For WMM, you can show (based on the assumption of independence between columns), that :

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where P_{i} and Q_{i} are the WMM/background distributions for column i.

Other Approaches

Other "spanning tree" algorithms
Other clustering algorithms
Repeated motifs
Hidden Markov Models
Gibbs sampling

Summary

Very important problem
Exact solutions in poly time appear impossible
Bounded approximations are possible Many heuristics have been tried
Still an open field

