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CSE 427
Computational Biology

Winter 2008

Sequence Alignment;
DNA Replication
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Sequence Alignment

Part I
Motivation, dynamic programming,

global alignment
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Sequence Alignment

• What
• Why
• A Simple Algorithm
• Complexity Analysis
• A better Algorithm:

“Dynamic Programming”
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 Sequence Similarity: What

G G A C C A

T A C T A A G

T C C A A T



6

 Sequence Similarity: What

G G A C C A

T A C T A A G
 |  :   |  :  |   |  :
T C C – A A T
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Sequence Similarity: Why

• Most widely used comp. tools in biology
• New sequence always compared to

sequence data bases
Similar sequences often have similar

origin or function
• Recognizable similarity after 108 –109 yr
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Taxonomy Report

root .................................    64 hits   16 orgs

. Eukaryota ..........................    62 hits   14 orgs [cellular organisms]

. . Fungi/Metazoa group ..............    57 hits   11 orgs

. . . Bilateria ......................    38 hits    7 orgs [Metazoa; Eumetazoa]

. . . . Coelomata ....................    36 hits    6 orgs

. . . . . Tetrapoda ..................    26 hits    5 orgs [;;; Vertebrata;;;; Sarcopterygii]

. . . . . . Eutheria .................    24 hits    4 orgs [Amniota; Mammalia; Theria]

. . . . . . . Homo sapiens ...........    20 hits    1 orgs [Primates;; Hominidae; Homo]

. . . . . . . Murinae ................     3 hits    2 orgs [Rodentia; Sciurognathi; Muridae]

. . . . . . . . Rattus norvegicus ....     2 hits    1 orgs [Rattus]

. . . . . . . . Mus musculus .........     1 hits    1 orgs [Mus]

. . . . . . . Sus scrofa .............     1 hits    1 orgs [Cetartiodactyla; Suina; Suidae; Sus]

. . . . . . Xenopus laevis ...........     2 hits    1 orgs [Amphibia;;;;;; Xenopodinae; Xenopus]

. . . . . Drosophila melanogaster ....    10 hits    1 orgs [Protostomia;;;; Drosophila;;;]

. . . . Caenorhabditis elegans .......     2 hits    1 orgs [; Nematoda;;;;;; Caenorhabditis]

. . . Ascomycota .....................    19 hits    4 orgs [Fungi]

. . . . Schizosaccharomyces pombe ....    10 hits    1 orgs [;;;; Schizosaccharomyces]

. . . . Saccharomycetales ............     9 hits    3 orgs [Saccharomycotina; Saccharomycetes]

. . . . . Saccharomyces ..............     8 hits    2 orgs [Saccharomycetaceae]

. . . . . . Saccharomyces cerevisiae .     7 hits    1 orgs

. . . . . . Saccharomyces kluyveri ...     1 hits    1 orgs

. . . . . Candida albicans ...........     1 hits    1 orgs [mitosporic Saccharomycetales;]

. . Arabidopsis thaliana .............     2 hits    1 orgs [Viridiplantae; …Brassicaceae;]

. . Apicomplexa ......................     3 hits    2 orgs [Alveolata]

. . . Plasmodium falciparum ..........     2 hits    1 orgs [Haemosporida; Plasmodium]

. . . Toxoplasma gondii ..............     1 hits    1 orgs [Coccidia; Eimeriida; Sarcocystidae;]

. synthetic construct ................     1 hits    1 orgs [other; artificial sequence]

. lymphocystis disease virus .........     1 hits    1 orgs [Viruses; dsDNA viruses, no RNA …]

BLAST Demo
http://www.ncbi.nlm.nih.gov/blast/

Try it!
pick any protein,
e.g. hemoglobin,
insulin, exportin,…
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Terminology
(CS, not necessarily Bio)

• String: ordered list of letters TATAAG

• Prefix: consecutive letters from front
empty, T, TA, TAT, ...

• Suffix: … from end
empty, G, AG, AAG, ...

• Substring: … from ends or middle
empty, TAT, AA, ...

• Subsequence: ordered, nonconsecutive
TT, AAA, TAG, ...
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Sequence Alignment

a c b c d b a c – – b c d b
c a d b d – c a d b – d –

Defn: An alignment of strings S, T is a
pair of strings S’, T’ (with spaces) s.t.
(1) |S’| = |T’|, and (|S| = “length of S”)
(2) removing all spaces leaves S, T
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     Alignment Scoring

a c b c d b a c - - b c d b

c a d b d - c a d b - d -

-1 2 -1 -1 2 -1 2 -1

Value = 3*2 + 5*(-1) = +1

• The score of aligning (characters or
spaces) x & y  is σ(x,y).

• Value of an alignment
• An optimal alignment: one of max value

Mismatch = -1
Match =  2

! =
|'|
1 ])['],['(S

i
iTiS"
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Optimal Alignment:
 A Simple Algorithm

for all subseqs A of S, B of T s.t. |A| = |B| do
align A[i] with B[i], 1 ≤ i ≤ |A|
align all other chars to spaces
compute its value
retain the max

end
output the retained alignment

S = abcd A = cd
T = wxyz B = xz
-abc-d a-bc-d
w--xyz -w-xyz
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Analysis

• Assume |S| = |T| = n
• Cost of evaluating one alignment: ≥ n

• How many alignments are there:
pick n chars of S,T together
say k of them are in S
match these k to the k unpicked chars of T

• Total time:

• E.g., for n = 20, time is > 240 operations

! 

" n
2n

n

# 

$ 
% 

& 

' 
( > 2

2n
,  for  n > 3! 

"
2n

n

# 

$ 
% 

& 

' 
( 



14

Polynomial vs
Exponential Growth
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Asymptotic Analysis

• How does run time grow as a function of
problem size?

n2  or   100 n2 + 100 n + 100  vs  22n

• Defn: f(n) = O(g(n)) iff there is a constant c
s.t. |f(n)| ≤ cg(n) for all sufficiently large n.

100 n2 + 100 n + 100 = O(n2)   [e.g. c = 300, or 101]
 n2 = O(22n)
 22n is not  O(n2)
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Utility of Asymptotics

• “All things being equal,” smaller asymptotic
growth rate is better

• All things are never equal
• Even so, big-O bounds often let you quickly

pick most promising candidates among
competing algorithms

• Poly time algorithms often practical;
non-poly algorithms seldom are.
(Yes, there are exceptions.)
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Fibonacci Numbers

fib(n) {
if (n <= 1) {

return 1;
} else {

return fib(n-1) + fib(n-2);
}

}

Simple recursion,
but many
repeated
subproblems!!

=>

Time = Ω(1.61n)
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Fibonacci, II

int fib[n];
fib[0] = 1;
fib[1] = 1;
for(i=2; i<=n; i++) {

fib[i] = fib[i-1] + fib[i-2];
}
return fib[n];

“Dynamic
Programming”

Avoid repeated work by
tabulating solutions to
repeated subproblems

=>

Time = O(n)

(in this case)
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Candidate for Dynamic
Programming?

• Common Subproblems?
• Plausible: probably re-considering alignments of

various small substrings unless we're careful.
• Optimal Substructure?
• Plausible: left and right "halves" of an optimal

alignment probably should be optimally aligned
(though they obviously interact a bit at the
interface).

• (Both made rigorous below.)
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Optimal Substructure
(In More Detail)

• Optimal alignment ends in 1 of 3 ways:
• last chars of S & T aligned with each other
• last char of S aligned with space in T
• last char of T aligned with space in S
• ( never align space with space; σ(–, –) < 0 )

• In each case, the rest of S & T should
be optimally aligned to each other
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Optimal Alignment in O(n2)
via “Dynamic Programming”

• Input: S, T, |S| = n, |T| = m
• Output: value of optimal alignment

Easier to solve a “harder” problem:

V(i,j) = value of optimal alignment of 
S[1], …, S[i] with T[1], …, T[j] 
for all 0 ≤ i ≤ n, 0 ≤ j ≤ m.
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Base Cases

• V(i,0): first i chars of S all match spaces

• V(0,j): first j chars of T all match spaces

! 

V (i,0) = " (S[k],#)
k=1

i

$

! 

V (0, j) = " (#,T [k])
k=1

j

$
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General Case

Opt align of S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
S1…Si-1 &
T1…Tj-1

! 

V(i,j) =  max 

V(i-1,j-1) +" (S[i],T[j])

V(i-1,j)   +" (S[i],  -   )

V(i,j-1)   +" ( -  ,  T[j])
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Calculating One Entry

! 

V(i,j) =  max 

V(i-1,j-1) +" (S[i],T[j])

V(i-1,j)   +" (S[i],  -   )

V(i,j-1)   +" ( -  ,  T[j])
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V(i-1,j-1)

V(i,j)

V(i-1,j)

V(i,j-1)S[i]     . .

T[j]
  :
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Example
j  0  1  2  3  4  5

i  c  a  d  b  d      ←T

0  0 -1 -2 -3 -4 -5

1 a -1 -1  1

2 c -2  1

3 b -3

4 c -4

5 d -5

6 b -6
↑
S

Time = 
  O(mn)

Mismatch = -1
Match =  2
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j  0  1  2  3  4  5
i  c  a  d  b  d      ←T

0  0 -1 -2 -3 -4 -5

1 a -1 -1  1  0 -1 -2

2 c -2  1  0  0 -1 -2

3 b -3  0  0 -1  2  1

4 c -4 -1 -1 -1  1  1

5 d -5 -2 -2  1  0  3

6 b -6 -3 -3  0  3  2
↑
S

Example
Mismatch = -1
Match =  2
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Finding Alignments:
Trace Back

j  0  1  2  3  4  5
i  c  a  d  b  d      ←T

0  0 -1 -2 -3 -4 -5

1 a -1 -1  1  0 -1 -2

2 c -2  1  0  0 -1 -2

3 b -3  0  0 -1  2  1

4 c -4 -1 -1 -1  1  1

5 d -5 -2 -2  1  0  3

6 b -6 -3 -3  0  3  2
↑
S
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Complexity Notes

• Time = O(mn), (value and alignment)
• Space = O(mn)
• Easy to get value in Time = O(mn) and

Space = O(min(m,n))
• Possible to get value and alignment in

Time = O(mn) and Space = O(min(m,n))
but tricky.
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Sequence Alignment

Part II
Local alignments & gaps
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Variations

• Local Alignment
• Preceding gives global alignment, i.e. full

length of both strings;
• Might well miss strong similarity of part of

strings amidst dissimilar flanks
• Gap Penalties
• 10 adjacent spaces cost 10 x one space?

• Many others
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Local Alignment:Motivations

• “Interesting” (evolutionarily conserved,
functionally related) segments may be a small
part of the whole
• “Active site” of a protein
• Scattered genes or exons amidst “junk”, e.g.

retroviral insertions, large deletions
• Don’t have whole sequence

• Global alignment might miss them if flanking
junk outweighs similar regions
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Local Alignment

Optimal local alignment of strings S & T:
Find substrings A of S and B of T
having max value global alignment

S = abcxdex A = c x d e
T = xxxcde B = c - d e     value = 5
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The “Obvious” Local
Alignment Algorithm

for all substrings A of S and B of T
Align A & B via dynamic programming
Retain pair with max value

end ;
Output the retained pair

Time: O(n2) choices for A, O(m2) for B,
O(nm) for DP, so O(n3m3) total.

[Best possible?  Lots of redundant work…]
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Local Alignment in O(nm)
via Dynamic Programming

• Input: S, T, |S| = n, |T| = m
• Output: value of optimal local alignment
Better to solve a “harder” problem
for all 0 ≤ i ≤ n, 0 ≤ j ≤ m :

V(i,j) = max value of opt (global) 
alignment of a suffix of S[1], …, S[i]
with a suffix of T[1], …, T[j]

Report best i,j
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Base Cases

• Assume σ(x,-) ≤ 0, σ(-,x) ≤ 0

• V(i,0): some suffix of first i chars of S; all
match spaces in T; best suffix is empty

V(i,0) = 0

• V(0,j): similar

V(0,j) = 0
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General Case Recurrences

Opt suffix align S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
suffix of
S1…Si-1 &
T1…Tj-1
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,

0

)     (1

)   (1

)(11

max 

mjni

T[j],-)   V(i,j-

- S[i], ,j)   V(i-

S[i],T[j]),j-V(i-

 V(i,j) 

!!!!

"
#

"
$

%

"
&

"
'

(

+

+

+

=
)
)
)

!"
#

$%
&

!"
#

$%
& '

!"
#

$%
&

'!"
#

$%
&

or  ,
][~~~~

      ~~~~
  ,

     ~~~~

][  ~~~~
   ,

][~~~~

][~~~~

jT

iS

jT

iS

opt suffix
alignment
has:
 2, 1, 1, 0
chars of
S/T



38

Scoring Local Alignments
j 0 1 2 3  4 5 6

i x x x c d e     ←T

0 0 0 0 0 0 0 0
1 a 0
2 b 0
3 c 0
4 x 0
5 d 0
6 e 0
7 x 0

↑
S



39

Finding Local Alignments
j 0 1 2 3  4 5 6

i x x x c d e     ←T
0 0 0 0 0 0 0 0
1 a 0 0 0 0 0 0 0
2 b 0 0 0 0 0 0 0
3 c 0 0 0 0 2 1 0
4 x 0 2 2 2 1 1 0
5 d 0 1 1 1 1 3 2
6 e 0 0 0 0 0 2 5
7 x 0 2 2 2 1 1 4

↑
S
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Notes

• Time and Space = O(mn)
• Space O(min(m,n)) possible with time

O(mn), but finding alignment is trickier

• Local alignment: “Smith-Waterman”
• Global alignment: “Needleman-Wunsch”
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Alignment With Gap Penalties

• Gap: maximal run of spaces in S’ or T’
ab----c-d

a-ddddcbd 2 gaps in S’, 1 in T’

• Motivations, e.g.:
• mutation might insert/delete several or

even many residues at once
• matching cDNA (no introns) to genomic

DNA (exons and introns)
• Some parts of proteins less critical
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A Protein Structure:
(Dihydrofolate Reductase)  
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Topoisomerase I

http://www.rcsb.org/pdb/explore.do?structureId=1a36
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Sequence Evolution

Nothing in Biology Makes Sense Except in the Light of
Evolution
Theodosius Dobzhansky, 1973

Changes happen at random
Deleterious/neutral/advantageous changes

unlikely/possibly/likely spread widely in a population
Changes are less likely to be tolerated in positions

involved in many/close interactions, e.g.
enzyme binding pocket
protein/protein interaction surface
…
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• Score = f(gap length)
• Kinds, & best known alignment time

• general O(n3)

• convex O(n2log n)

• affine O(mn)

Gap Penalties
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Global Alignment with
Affine Gap Penalties

V(i,j) = value of opt alignment of
S[1], …, S[i] with T[1], …, T[j]

G(i,j) =…, s.t. last pair matches S[i] & T[j]
F(i,j) = …, s.t. last pair matches S[i] & –
E(i,j) = …, s.t. last pair matches   –  & T[j]

Time: O(mn)   [calculate all, O(1) each]
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Affine Gap Algorithm

Gap penalty = g + s*(gap length), g,s ≥ 0

V(i,0)= E(i,0) = V(0,i) = F(0,i) = -g-i*s

V(i,j) = max(G(i,j), F(i,j), E(i,j))
G(i,j) = V(i-1,j-1) + σ(S[i],T[j])
F(i,j) = max( F(i-1,j)-s , V(i-1,j)-g-s )
E(i,j) = max( E(i,j-1)-s , V(i,j-1)-g-s )

old gap   new gap
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Summary

• Functionally similar proteins/DNA often have
recognizably similar sequences even after eons of
divergent evolution

• Ability to find/compare/experiment with “same”
sequence in other organisms is a huge win

• Surprisingly simple scoring model works well in
practice: score each position separately & add,
possibly w/ fancier gap model like affine

• Simple “dynamic programming” algorithms can find
optimal alignments under these assumptions in poly
time (product of sequence lengths)

• This, and heuristic approximations to it like BLAST,
are workhorse tools in molecular biology
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Weekly Bio Interlude

DNA Replication
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DNA Replication: Basics

3’           5’

A

A

AC

C

C

G

G

G

T

T

T

T

3’                      5’

ACGAT

A
G

T

T

A

AC

G

5’     3’
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Issues & Complications, I

• 1st ~10 nt’s added are called the primer
• In simple model, DNA pol has 2 jobs: prime &

extend
• Priming is error-prone
• So, specialized primase

does the priming; pol
specialized for fast,
accurate extension

• Still doesn’t solve the accuracy problem
(hint: primase makes an RNA primer)

3’                      5’
pol starts here

primase

primer
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Issue 2: Rep Forks & Helices

• “Replication Fork”: DNA double helix
is progressively unwound by a DNA
helicase, and both resulting single
strands are duplicated

• DNA polymerase synthesizes new
strand 5’ -> 3’(reading its template
strand 3’ -> 5’)

• That means on one (the “leading”)
strand, DNA pol is chasing/pushing
the replication fork

• But on the other “lagging” strand,
DNA pol is running away from it.

5’

3’

3’

5’

leading

lagging
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Issue 3: Fragments

• Lagging strand gets a series
of “Okazaki fragments” of
DNA (~200nt in eukaryotes)
following each primer

• The RNA primers
are later removed
by a nuclease and
DNA pol fills gaps (more
accurate than primase)

• Fragments joined by ligase

primerprimer Okazaki

primer

3’                    5’

pol starts here
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Issue 4: Coord Lead/Lag

Alberts et al., Mol. Biol. of the Cell, 3rd ed, p258
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5’

3’

3’

5’

Issue 5: Twirls & Tangles

• Unwinding helix (~10 nucleotides
per turn) would cause stress.
Topoisomerase I cuts DNA
backbone on one strand,
allowing it to spin about the
remaining bond, relieving stress

• Topoisomerase II can cut &
rejoin both strands, after allowing
another double strand to pass
through the gap, de-tangling it.
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Issue 6: Proofreading

• Error rate of pol itself is ~10-4, but overall rate
is 10-9, due to proofreading & repair, e.g.
• pol itself can back up & cut off a mismatched base

if one happens to be inserted
• priming the new strand is hard to do accurately,

hence RNA primers, later removed & replaced
• other enzymes scan helix for “bulges” caused by

base mismatch, figure out which strand is original,
cut away new (faulty) copy; DNA pol fills gap

• which strand is original? In bacteria, some A’s are
“methylated”, but not immediately after replication
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Replication Summary

• Speed: 50 (eukaryotes) - 500
(prokaryotes) bp/sec

• Accuracy: 1 error per 109 bp
• Complex & highly optimized
• Highly similar across all living cells

• More info:
Alberts et al., Mol. Biol. of the Cell


