

He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

-- Chinese Proverb

This week

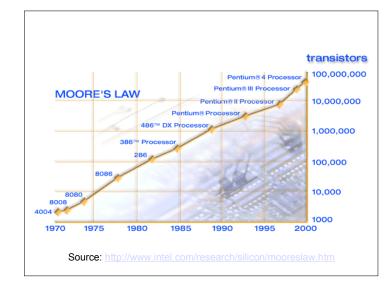
Admin

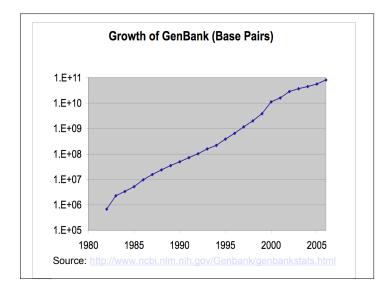
Why Comp Bio?

The world's shortest Intro. to Mol. Bio.

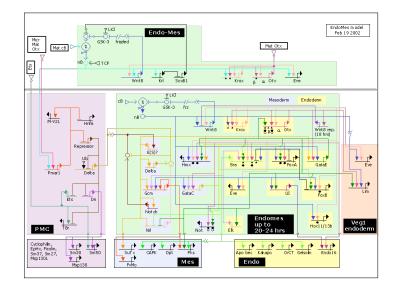
Admin Stuff

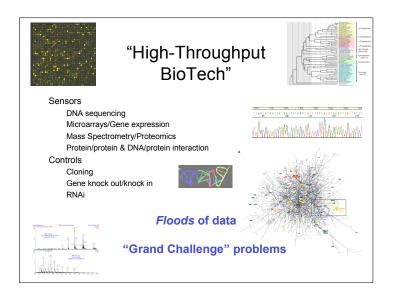
Course Mechanics & Grading


Reading In class discussion Homeworks reading paper exercises programming Small Project? No exams


Digression: Evolution & scientific literacy

- "human beings, as we know them, developed from earlier species of animals" (avoiding the now politically charged word "evolution")
- from 1985 to 2005, the % of Americans rejecting: declined from 48% to 39% accepting: also declined 45% to 40 uncertain: increased 7% to 21%
- In a 2005 survey, the proportion of adults who accept evolution in 34 European countries and Japan, the United States ranked 33rd, just above Turkey.


http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0040167



The Human Genome Project											
1	gageceggee	cadadacad	gcggcgggat	agcgggaccc	caacacaaca	gtgcgcttca					
	gggcgcagcg										
	gcggctcggc										
	tttagcgtcc										
	aaccagagcc										
301	caatgtctgt	ggatcacgtt	ataatgctta	ctgttgccct	ggatggaaaa	ccttacctgg					
	cggaaatcag										
421	gccaaatatg	tgcacttgcc	catctggtca	gatagctcct	tcctgtggct	ccagatccat					
481	acaacactgc	aatattcgct	gtatgaatgg	aggtagctgc	agtgacgatc	actgtctatg					
541	ccagaaagga	tacataggga	ctcactgtgg	acaacctgtt	tgtgaaagtg	gctgtctcaa					
601	tggaggaagg	tgtgtggccc	caaatcgatg	tgcatgcact	tacggattta	ctggacccca					
661	gtgtgaaaga	gattacagga	caggcccatg	ttttactgtg	atcagcaacc	agatgtgcca					
721	gggacaactc	agcgggattg	tctgcacaaa	acagctctgc	tgtgccacag	tcggccgagc					
781	ctggggccac	ccctgtgaga	tgtgtcctgc	ccagcctcac	ccctgccgcc	gtggcttcat					
841	tccaaatatc	cgcacgggag	cttgtcaaga	tgtggatgaa	tgccaggcca	tccccgggct					
901	ctgtcaggga	ggaaattgca	ttaatactgt	tgggtctttt	gagtgcaaat	gccctgctgg					
961	acacaaactt	aatgaagtgt	cacaaaaatg	tgaagatatt	gatgaatgca	gcaccattcc					
1023	1										

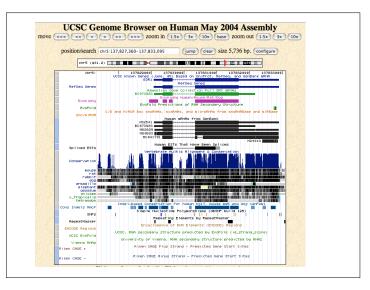
What's all the fuss?The human genome is "finished"...Even if it were, that's only the beginningExplosive growth in biological data isrevolutionizing biology & medicine"All pre-genomic labtechniques are obsolete"Mark computation and mathematics arecucial to post-genomic analysis

CS Points of Contact & Opportunities

Scientific visualization Gene expression patterns Databases Integration of disparate, overlapping data sources Distributed genome annotation in face of shifting underlying genomic coordinates Al/NLP/Text Mining Information extraction from journal texts with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models,... Machine learning System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec,...) ... Algorithms

Computers in biology: Then & now

Trends in Biochemical Sciences Volume 12, 1987, Pages 279-280


cor 10.10.0569560-000157/501.5-6 Copyright @ 1987 Administry Elsevier Science 168

Microfile

Sequence alignment by word processor

D. Ross Boswell

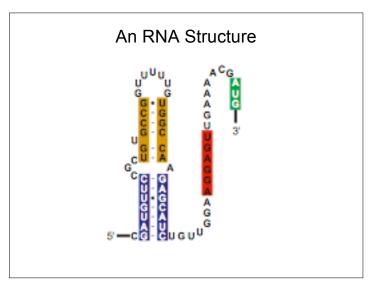
Department of Haematological Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's I Road, Cambridge CB2 2Q1., UK

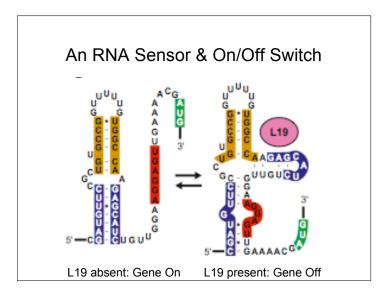
Published online 9 July 2007

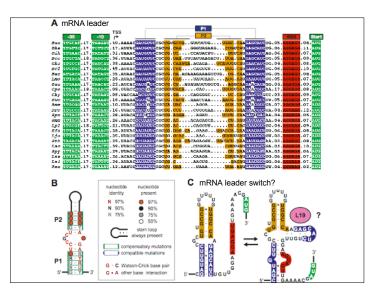
Nucleic Acids Research, 2007, Vol. 35, No. 14 4809-4819 doi:10.1093/nar/gkm487

Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline

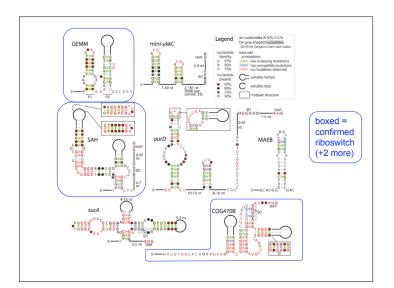
Zasha Weinberg^{1,*}, Jeffrey E. Barrick^{2,3}, Zizhen Yao⁴, Adam Roth², Jane N. Kim¹, Jeremy Gore¹, Joy Xin Wang^{1,2}, Elaine R. Lee¹, Kirsten F. Block¹, Narasimhan Sudarsan¹, Shane Neph⁵, Martin Tompa^{4,5}, Walter L. Ruzzo^{4,5} and Ronald R. Breaker^{1,2,3}

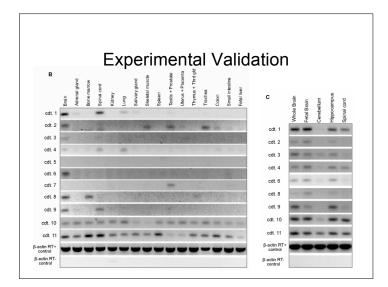

¹Department of Molecular, Cellular and Developmental Biology, ²Howard Hughes Medical Institute, ³Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103, USA ⁴Department of Computer Science and Engineering and ⁵Department of Genome Sciences, University of Washington, Box 352350, Seattle, VM 98159-5230, USA

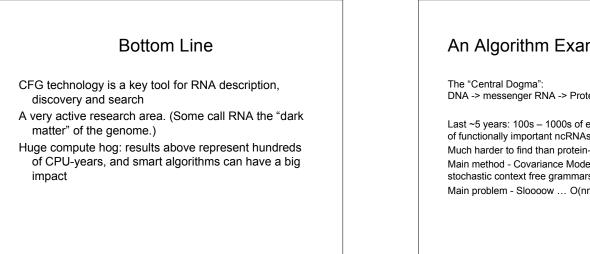

Letter=

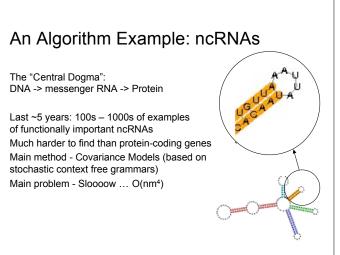

Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions

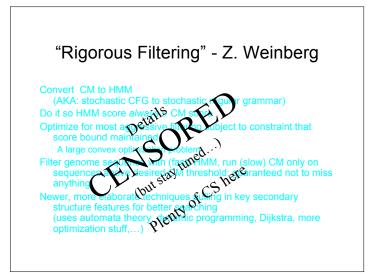
Elfar Torarinsson,^{1,2} Zizhen Yao,³ Eric D. Wiklund,⁴ Jesper B. Bramsen,⁴ Claus Hansen,⁵ Jørgen Kjems,⁴ Niels Tommerup,⁵ Walter L. Ruzzo,^{3,6} and Jan Gorodkin^{1,7}

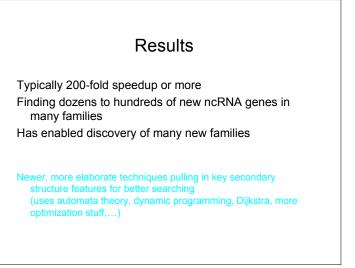

¹Section for Genetics and Bioinformatics, IBVH, Faculty of Life Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; ²Department of Natural Sciences, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; ²Department of Computer Science and Engineering, University of Washington Seattle, Washington 98195-2300, USA; ⁴Department of Molecular Biology, University of Washington Seattle, Washington 98195-5305, USA; ⁴Mediane, Milheim Johannsen Centre for Functional Genome Research, University of Copenhagen, 2200 Copenhagen N, Denmark; ⁴Department of Genome Sciences, University of Washington Seattle, Washington 98195-5305, USA



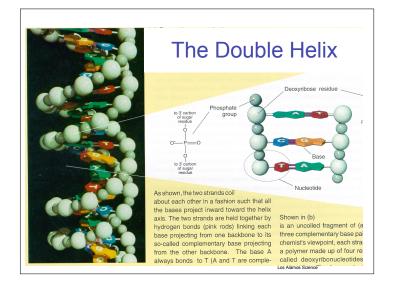





An RNA Grammar $S \rightarrow LS \mid L$ $L \rightarrow s \mid "dFd"$ $F \rightarrow LS \mid "dFd"$	a) <i>S</i>	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	L
"dFd" means Watson-Crick base pair: <i>aFu</i> <i>uFa</i> <i>gFc</i> <i>cFg</i> paren-like nesting	b) c) <i>F</i>	$s s s s d-d d-d d-d ssd-d d-d sssss s$ $\rightarrow dFd \rightarrow ddFdd \rightarrow ddLSdd$ $\rightarrow ddLLdd \rightarrow ddLsdd \rightarrow dddFdsda$	ł



More Admin More Admin Spec Singl Tech Enou ver Math Appli


Course Focus & Goals

Mainly sequence analysis Algorithms for alignment, search, & discovery Specific sequences, general types ("genes", etc.) Single sequence and comparative analysis Techniques: HMMs, EM, MLE, Gibbs, Viterbi... Enough bio to motivate these problems, including very light intro to modern biotech supporting them Math/stats/cs underpinnings thereof Applied to real data

A VERY Quick Intro To Molecular Biology

The Genome

The hereditary info present in every cell
DNA molecule -- a long sequence of *nucleotides* (A, C, T, G)
Human genome -- about 3 x 10⁹ nucleotides
The genome project -- extract & interpret genomic information, apply to genetics of disease, better understand evolution, ...

DNA

Discovered 1869 Role as carrier of genetic information - much later The Double Helix - Watson & Crick 1953 Complementarity $A \leftarrow \rightarrow T$ $C \leftarrow \rightarrow G$ Visualizations:

http://www.rcsb.org/pdb/explore.do?structure Id=123D

Genetics - the study of heredity

A *gene* -- classically, an abstract heritable attribute existing in variant forms (*alleles*)

Genotype vs phenotype

Mendel

Each individual two copies of each gene Each parent contributes one (randomly) Independent assortment

Cells

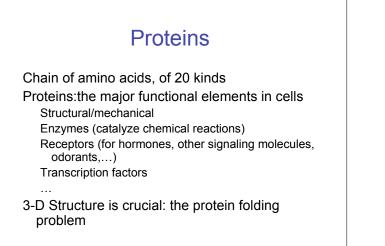
Chemicals inside a sac - a fatty layer called the plasma membrane

Prokaryotes (bacteria, archaea) - little recognizable substructure

Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) - genetic material in nucleus, other organelles for other specialized functions

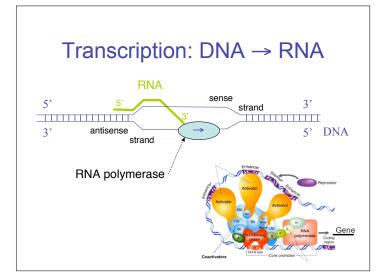
Chromosomes

 pair of (complementary) DNA molecules (+ protein wrapper)
 Most prokaryotes have just 1 chromosome Eukaryotes - all cells have same number of chromosomes, e.g. fruit flies 8, humans & bats 46, rhinoceros 84, ...


Mitosis/Meiosis

Most "higher" eukaryotes are *diploid* - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)

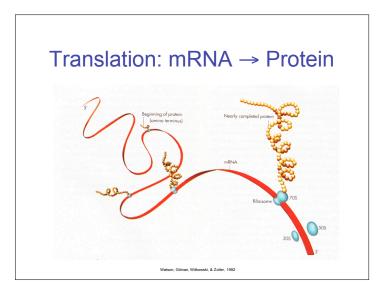
Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell

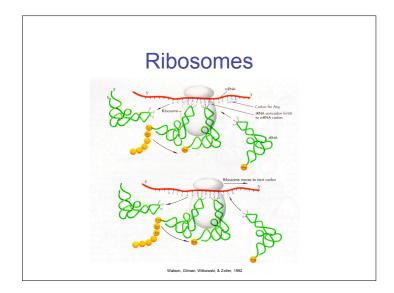

Meiosis - 2 divisions form 4 *haploid* gametes (egg/sperm)

Recombination/crossover -- exchange maternal/paternal segments

The "Central Dogma"

Genes encode proteins DNA transcribed into messenger RNA mRNA translated into proteins Triplet code (codons)




Codons & The Genetic Code

		Second Base					
		U	С	A	G		
_	U	Phe	Ser	Tyr	Cys	U	
		Phe	Ser	Tyr	Cys	С	
		Leu	Ser	Stop	Stop	Α	
		Leu	Ser	Stop	Trp	G	
	с	Leu	Pro	His	Arg	U C	
		Leu	Pro	His	Arg	С	-
se		Leu	Pro	Gln	Arg	A G	3Se
Base		Leu	Pro	Gln	Arg		Base
First	A	lle	Thr	Asn	Ser	U	Third
È		lle	Thr	Asn	Ser	С	2
		lle	Thr	Lys	Arg	A	'
		Met/Start	Thr	Lys	Arg	G	1
	G	Val	Ala	Asp	Gly	U	
		Val	Ala	Asp	Gly	С	
		Val	Ala	Glu	Gly	C A	
		Val	Ala	Glu	Gly	G	

Ala : Alanine Arg : Arginine Asn : Asparagine Asp : Aspartic acid Cys : Cysteine GIn : Glutamine Glu : Glutamic acid Gly : Glycine His : Histidine Ile : Isoleucine Leu : Leucine Lys : Lysine Met : Methionine Phe : Phenylalanine Pro : Proline Ser : Serine Thr : Threonine Trp : Tryptophane Tyr : Tyrosine

Val : Valine

Gene Structure

Transcribed 5' to 3'

- Promoter region and transcription factor binding sites (usually) precede 5' end
- Transcribed region includes 5' and 3' untranslated regions
- In eukaryotes, most genes also include *introns*, spliced out before export from nucleus, hence before translation

Genome Sizes

	Base Pairs	Genes
Mycoplasma genitalium	580,073	483
MimiVirus	1,200,000	1,260
E. coli	4,639,221	4,290
Saccharomyces cerevisiae	12,495,682	5,726
Caenorhabditis elegans	95,500,000	19,820
Arabidopsis thaliana	115,409,949	25,498
Drosophila melanogaster	122,653,977	13,472
Humans	3.3 x 10 ⁹	~25,000

Genome Surprises

Humans have < 1/3 as many genes as expected But perhaps more proteins than expected, due to *alternative splicing, alt start, alt end*

Protein-wise, all mammals are just about the same

But more individual variation than expected

And many more *non-coding RNAs* -- more than protein-coding genes, by some estimates

Many other non-coding regions are highly conserved, e.g., across all vertebrates

90% of DNA is transcribed (< 2% coding) Complex, subtle "epigenetic" information

... and much more ...

Read one of the many intro surveys or books for much more info.