1. The single source shortest path algorithm we studied (Dijkstra’s algorithm) requires time \(\Theta((|E| + |V|) \log |V|) \) to find the minimum distance \(d_i \) from the source vertex to vertex \(i \), \(1 \leq i \leq n \). Checking the answer seems to be easier than finding it. Give a linear time algorithm that, given a graph \(G \) and a sequence of distances \(d_i; 1 \leq i \leq n \), will verify whether these \(d_i \)'s are indeed the minimum distances from the source to each vertex \(i \). Argue the correctness of your algorithm and analyze its complexity.

2. Text page 531, exercise 25.2-2. The second part of the question can be answered relative to either the proof given in class or the proof of 25.10 in the book.

5. [“Spreadsheet Evaluation”] Let \(G \) be a directed acyclic graph having a \(k \)-ary function symbol \(f_v \) (like plus, times, etc.) associated with each vertex \(v \) of out-degree \(k \). (A 0-ary “function” is just an integer constant.) Define the “value” of a vertex \(v \) to be the value obtained (recursively) by applying the function \(f_v \) to the values of the vertices pointed to by \(v \)'s out edges.

(a) Give an algorithm to compute the values of each vertex in \(G \).

(b) Breadth First Search wouldn’t be a good choice for this task. Give a simple example and briefly sketch why (or prove me wrong).