Depth First Search and Strongly Connected Components

Undirected Depth-First Search

- Key Properties:
 1. No "cross-edges"; only tree- or back-edges
 2. Before returning, DFS(v) visits all vertices reachable from v via paths through previously unvisited vertices

Directed Depth First Search

- Algorithm: Unchanged
- Key Properties:
 1. Unchanged
 2. Edge (v,w) is:
 - Tree-edge if w unvisited
 - Back-edge if w visited, #w < #v, on stack
 - Cross-edge if w visited, #w < #v, not on stack
 - Forward-edge if w visited, #w > #v
- Note: Cross edges only go “Right” to “Left”

An Application:

G has a cycle ⇔ DFS finds a back edge

⇒ Clear.
⇒ Why can’t we have something like this?:

Strongly Connected Components

- Defn: G is strongly connected if for all u,v there is a (directed) path from u to v and from v to u.
 [Equivalently: there is a cycle through u and v.]
- Defn: a strongly connected component of G is a maximal strongly connected subgraph.
Uses for SCC’s
- Optimizing compilers need to find loops, which are SCC’s in the program flow graph.
- If \((u,v)\) means process \(u\) is waiting for process \(v\), SCC’s show deadlocks.

Two Simple SCC Algorithms
- \(u,v\) in same SCC iff there are paths \(u \to v \& v \to u\)
- Transitive closure: \(O(n^3)\)
- DFS from every \(u, v\): \(O(ne) = O(n^3)\)

Goal:
- Find all Strongly Connected Components in linear time, i.e., time \(O(n+e)\)

(Tarjan, 1972)

Lemma 1
Before returning, \(dfs(v)\) visits
- all unvisited vertices reachable from \(v\)
- only unvisited vertices reachable from \(v\)
All become descendants of \(v\) in the tree.

Proof:
- \(dfs\) follows all direct out-edges
- call \(dfs\) recursively at each
- by induction on path length, visits all
Definition

The root of an SCC is the first vertex in it visited by DFS.

Equivalently, the root is the vertex in the SCC with the smallest number.

Lemma 2

All members of an SCC are descendants of its root.

Proof:
- all members are reachable from all others
- so, all are reachable from its root
- all are unvisited when root is visited
- so, all are descendants of its root (Lemma 1)

Subgoal

- Can we identify some root?
- How about the root of the first SCC completely explored by DFS?
- Key idea: no exit from first SCC (first SCC is leftmost “leaf” in collapsed DAG)

Definition

\(x \) is an exit from \(v \) (from \(v \)'s subtree) if
- \(x \) is not a descendant of \(v \), but
- \(x \) is the head of a (cross- or back-) edge from a descendant of \(v \) (including \(v \) itself)

NOTE: \(\#x < \#v \)

Lemma 3

If \(v \) is not a root, then \(v \) has an exit.

Proof:
- let \(r \) be root of \(v \)'s SCC
- \(r \) is a proper ancestor of \(v \) (Lemma 2)
- let \(x \) be the first vertex that is not a descendant of \(v \) on a path \(v \rightarrow r \).
- \(x \) is an exit

Cor: If \(v \) has no exit, then \(v \) is a root.

NB: converse not true; some roots do have exits
Lemma 4

If \(r \) is the first root from which \(\text{dfs} \) returns, then \(r \) has no exit

Proof:
- Suppose \(x \) is an exit
- let \(z \) be root of \(x \)'s SCC
- \(r \) not reachable from \(z \), else in same SCC
- \(\#z \leq \#x \) (\(z \) ancestor of \(x \); Lemma 2)
- \(\#x < \#r \) (\(x \) is an exit from \(r \))
- \(\#z < \#r \), no \(z \rightarrow r \) path, so return from \(z \) first
- Contradiction

How to Find Exits (in 1st component)

- All exits \(x \) from \(v \) have \(\#x < \#v \)
- Suffices to find any of them, e.g. \(\min \# \)

Defn:
\[
\text{LOW}(v) = \min(\{ \#x \mid x \text{ an exit from } v \} \cup \{\#v\})
\]

Calculate inductively:
\[
\text{LOW}(v) = \min:\
- \#v
- \{ \text{LOW}(w) \mid w \text{ a child of } v \}
- \{ \#x \mid (v, x) \text{ is a back- or cross-edge } \}
\]

Finding Other Components

- Key idea: No exit from
 - 1st SCC
 - 2nd SCC, except maybe to 1st
 - 3rd SCC, except maybe to 1st and/or 2nd
 - ...

Lemma 3’

If \(v \) is not a root, then \(v \) has an exit.

Proof:
- let \(r \) be root of \(v \)'s SCC
- \(r \) is a proper ancestor of \(v \) (Lemma 2)
- let \(x \) be the first vertex that is not a descendant of \(v \) on a path \(v \rightarrow r \)
- \(x \) is an exit

Cor: If \(v \) has no exit, then \(v \) is a root.

Lemma 4’

If \(r \) is the first root from which \(\text{dfs} \) returns, then \(r \) has no exit

Proof:
- Suppose \(x \) is an exit
- let \(z \) be root of \(x \)'s SCC
- \(r \) not reachable from \(z \), else in same SCC
- \(\#z \leq \#x \) (\(z \) ancestor of \(x \); Lemma 2)
- \(\#x < \#r \) (\(x \) is an exit from \(r \))
- \(\#z < \#r \), no \(z \rightarrow r \) path, so return from \(z \) first
- Contradiction
How to Find Exits (in 1st component)

- All exits x from v have #x < #v
- Suffices to find any of them, e.g. min #
- Defn:
 LOW(v) = min({ #x | x an exit from v } ∪ {#v})

Calculate inductively:
LOW(v) = min of:
- #v
- { LOW(w) | w a child of v }
- { #x | (v,x) is a back- or cross-edge }

and x not in first (k-1) components.

SCC Algorithm

#v = DFS number
v.low = LOW(v)
v.scc = component #

SCC(v)
#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)
if #w == 0 then
 SCC(w); v.low = min(v.low, w.low) // tree edge
else if #w < #v & & w.scc == 0 then
 v.low = min(v.low, #w) // cross- or back-edge
if #v = v.low then
 scc#++; // v is root of new scc
 repeat
 w = pop(); w.scc = scc#; // mark SCC members
 until w==v

Complexity

- Look at every edge once
- Look at every vertex (except via in-edge) at most once
- Time = O(n+e)