CSE 421

Dynamic Programming

Shayan Oveis Gharan

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum
in time Poly(n, log W).

DP Ideas so far

- You may have to define an ordering to decrease \#subproblems
- $\operatorname{OPT}(\mathrm{i}, \mathrm{w})$ is exactly the predicate of induction
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction

RNA Secondary Structure

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:
[Watson-Crick.]

- S is a matching and
- each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
[Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{1}\right)$ are two pairs in S, then we cannot have $\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.

Goal: Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

Secondary Structure (Examples)

DP: First Attempt

First attempt. Let $O P T(n)=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{n}$.

Suppose b_{n} is matched with b_{t} in $\operatorname{OPT}(n)$.
What IH should we use? match b_{+}and b_{n}

Difficulty: This naturally reduces to two subproblems

- Finding secondary structure in b_{1}, \ldots, b_{t-1}, i.e., OPT(t-1)
- Finding secondary structure in b_{t+1}, \ldots, b_{n-1}, ???

DP: Second Attempt

Definition: $O P T(i, j)=$ maximum number of base pairs in a secondary structure of thê substring $b_{i}, b_{i+1}, \ldots, b_{j}$

The most important part of a correct DP; It fixes IH
Case 1: If $j-i \leq 4$.

- $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.

Case 2: Base b_{j} is not involved in a pair.

- OPT(i, j) = OPT(i, j-1)

Case 3: Base b_{j} pairs with b_{t} for some $i \leq t<j-4$

- non-crossing constraint decouples resulting sub-problems
- $O P T(i, j)=\max _{t: b_{i} \text { pairs with } b_{t}}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}$

Recursive Code

```
Let M[i,j]=empty for all i,j.
Compute-OPT(i,j) {
    if (j-i <= 4)
        return 0;
    if (M[i,j] is empty)
        M[i,j]=Compute-OPT (i,j-1)
        for t=i to j-5 do
            if (b}\mp@subsup{b}{t}{},\mp@subsup{b}{j}{}\mathrm{ is in {A-U, U-A, C-G, G-C})
            M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +
                        Compute-OPT(t+1,j-1))
    return M[j]
}
```

Does this code terminate?
What are we inducting on?

Formal Induction

Let $O P T(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i}, b_{i+1}, \ldots, b_{j}$
Base Case: $\operatorname{OPT}(i, j)=0$ for all i, j where $|j-i| \leq 4$.
IH: For some $\ell \geq 4$, Suppose we have computed $\operatorname{OPT}(i, j)$ for all i, j where $|i-j| \leq \ell$.

IS: Goal: We find $O P T(i, j)$ for all i, j where $|i-j|=\ell+1$. Fix i, j such that $|i-j|=\ell+1$.
Case 1: Base b_{j} is not involved in a pair.

- $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\operatorname{OPT}(\mathrm{i}, \mathrm{j}-1)[$ this we know by IH since $|i-(j-1)|=\ell]$

Case 2: Base b_{j} pairs with b_{t} for some $\mathrm{i} \leq \mathrm{t}<\mathrm{j}-4$

- OPT $(i, j)=\max _{t: b_{i} \text { pairs with } b_{t}}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}$

Bottom-up DP

```
for \(k=1,2, \ldots, n-1\)
    for \(i=1,2, \ldots, n-1\)
        \(j=i+k\)
        if (j-i <= 4)
            M[i,j]=0;
            else
```



```
            \(M[i, j]=M[i, j-1]\)
            j
            for \(t=i\) to \(j-5\) do
                if \(\left(b_{t}, b_{j}\right.\) is in \(\left.\{A-U, U-A, C-G, G-C\}\right)\)
                \(M[i, j]=\max (M[i, j], 1+M[i, t-1]+M[t+1, j-1])\)
    return \(\mathrm{M}[1, \mathrm{n}]\)
\}
```

Running Time: $O\left(n^{3}\right)$

Lesson

We may not always induct on i or w to get to smaller subproblems.

We may have to induct on $|i-j|$ or $i+j$ when we are dealing with more complex problems, e.g., intervals

Sequence Alignment

Word Alignment

How similar are two strings? ocurrance occurrence

| 0 | c | u | r | r | a | n | c | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$--1$

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970] Cost $=$ \# of gaps + \#mismatches.

Applications.

- Basis for Unix diff and Word correct in editors.
- Speech recognition.
- Computational biology.

C	T	G	A	C	C	T	A	C	C	T
C	C	T	G	A	C	T	A	C	A	T

Cost: 5

Cost: 3

Sequence Alignment

Given two strings x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} find an alignment with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs $\left(x_{i_{1}}, y_{j_{1}}\right),\left(x_{i_{2}}, y_{j_{2}}\right), \ldots$ such that $i_{1}<i_{2}<\cdots$ and $j_{1}<j_{2}<\cdots$

Example: ctaccg vs. tacAtg.
Sol: We aligned
$\mathrm{x}_{2}-\mathrm{y}_{1}, \mathrm{x}_{3}-\mathrm{y}_{2}, \mathrm{x}_{4}-\mathrm{y}_{3}, \mathrm{x}_{5}-\mathrm{y}_{4}, \mathrm{x}_{6}-\mathrm{y}_{6}$.
So, the cost is 3 .

DP for Sequence Alignment

Let $O P T(i, j)$ be min cost of aligning x_{1}, \ldots, x_{i} and y_{1}, \ldots, y_{j}

Case 1: OPT matches x_{i}, y_{j}

- Then, pay mis-match cost if $x_{i} \neq y_{j}+\min$ cost of aligning x_{1}, \ldots, x_{i-1} and y_{1}, \ldots, y_{j-1} i.e., $\operatorname{OPT}(i-1, j-1)$

Case 2: OPT leaves x_{i} unmatched

- Then, pay gap cost for $x_{i}+O P T(i-1, j)$

Case 3: OPT leaves y_{j} unmatched

- Then, pay gap cost for $y_{j}+O P T(i, j-1)$

Bottom-up DP

```
Sequence-Alignment(m, n, }\mp@subsup{x}{1}{}\mp@subsup{\mathbf{x}}{2}{}\ldots..\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{Y}{2}{}\ldots..\mp@subsup{y}{n}{\prime})
    for i = 0 to m
        M[0, i] = i
    for j = 0 to n
        M[j, 0] = j
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min( ( }\mp@subsup{\textrm{x}}{\textrm{i}}{=}=\mp@subsup{y}{j}{}\mathrm{ ? 0:1) + M[i-1, j-1],
                        1 + M[i-1, j],
                        1 + M[i, j-1])
    return M[m, n]
}
```

Analysis: $\Theta(m n)$ time and space.
English words or sentences: m, $\mathrm{n} \leq 10, . ., 20$.
Computational biology: $m=n=100,000$. 10 billions ops OK, but 40GB array?

Optimizing Memory

If we are not using strong induction in the DP, we just need to use the last (row) of computed values.
}

```


```

```
    for i = 0 to m
```

```
    for i = 0 to m
        M[0, i] = i
        M[0, i] = i
    for j = 0 to n
    for j = 0 to n
        M[j, 0] = j
        M[j, 0] = j
    for i = 1 to m
    for i = 1 to m
        for j = 1 to n
        for j = 1 to n
            M[i, j] = min( ( }\mp@subsup{x}{i}{}=\mp@subsup{y}{j}{\prime}\mathrm{ ? 0:1) + M[i-1, j-1],
            M[i, j] = min( ( }\mp@subsup{x}{i}{}=\mp@subsup{y}{j}{\prime}\mathrm{ ? 0:1) + M[i-1, j-1],
            l + M[i-1, j],
            l + M[i-1, j],
            l +M[i-1, j],
            l +M[i-1, j],
    return M[m, n]
```

 return M[m, n]
    ```


Just need \(i-1\), \(i\) rows
to compute M[i,j]

\section*{DP with \(O(m+n)\) memory}
- Keep an Old array containing values of the last row
- Fill out the new values in a New array
- Copy new to old at the end of the loop

```

 for i = 0 to m
 O[i] = i
 for i = 1 to m
 N[0]=i
 M[i-1, j-1]
 for j = 1 to n
 N[j] = min((}\mp@subsup{x}{i}{}=\mp@subsup{y}{j}{\prime}\mathrm{ ? 0:1) + O[j-1],
 1 +O[j], M[i-1, j]
 1 + N[j-1]) }~M[i, j-1
 for j = 1 to n
 O[j]=N[j]
 return N[n]
 }

```

\section*{Lesson}

Advantage of a bottom-up DP:

It is much easier to optimize the space.

\section*{Longest Path in a DAG}

\section*{Longest Path in a DAG}

Goal: Given a DAG G, find the longest path.

Recall: A directed graph \(G\) is a DAG if it has no cycle.

This problem is NP-hard for general directed graphs:
- It has the Hamiltonian Path as a special case


\section*{DP for Longest Path in a DAG}

Q: What is the right ordering?
Remember, we have to use that \(G\) is a DAG, ideally in defining the ordering

We saw that every DAG has a topological sorting
So, let's use that as an ordering.


\section*{DP for Longest Path in a DAG}

Suppose we have labelled the vertices such that \((i, j)\) is a directed edge only if \(i<j\).


Let \(O P T(j)=\) length of the longest path ending at \(j\)
Suppose in the longest path ending at \(j\), last edge is \((i, j)\).
Then, none of the \(i+1, \ldots, j-1\) are in this path since topological ordering. Furthermore the path ending at i must be the longest path ending at i ,
\[
O P T(j)=O P T(i)+1 .
\]

\section*{DP for Longest Path in a DAG}

Suppose we have labelled the vertices such that \((i, j)\) is a directed edge only if \(i<j\).

Let \(O P T(j)=\) length of the longest path ending at \(j\)
\[
O P T(j)= \begin{cases}0 & \text { If } j \text { is a source } \\ 1+\max _{i:(i, j) \text { an edge }} O P T(i) & \text { o.w. }\end{cases}
\]

\section*{DP for Longest Path in a DAG}
```

Let G be a DAG given with a topological sorting: For all edges
(i,j) we have i<j.
Compute-OPT(j) {
if (in-degree(j)==0)
return 0
if (M[j]==empty)
M[j]=0;
for all edges (i,j)
M[j] = max(M[j],1+Compute-OPT(i))
return M[j]
}
Output max(M[1],..,M[n])

```

Running Time: \(O(n+m)\)
Memory: \(O(n)\)
Can we output the longest path?

\section*{Outputting the Longest Path}
```

Let G be a DAG given with a topological sorting: For all edges
(i,j) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j) {
if (in-degree(j)==0)
return 0
if (M[j]==empty)
M[j]=0;
for all edges (i,j)
if (M[j] < 1+Compute-opr(i)) we used to compute OPT(j)
M[j]=1+Compute-opT(i)
Parent[j]=i
return M[j]
}
Let M[k] be the maximum of M[1],···,M[n]
While (Parent[k]!=-1)
Print k
k=Parent[k]

```
```

